
Leveraging Sharding in the Design of
Scalable Replication Protocols

Hussam Abu-Libdeh
Dept. of Computer Science

Cornell University

hussam@cs.cornell.edu

Robbert van Renesse
Dept. of Computer Science

Cornell University

rvr@cs.cornell.edu

Ymir Vigfusson
School of Computer Science & CRESS

Reykjavik University

ymir@ru.is

Abstract
Most if not all datacenter services use sharding and repli-
cation for scalability and reliability. Shards are more-or-
less independent of one another and individually repli-
cated. In this paper, we challenge this design philosophy
and present a replication protocol where the shards inter-
act with one another: A protocol running within shards
ensures linearizable consistency, while the shards inter-
act in order to improve availability. We provide a specifi-
cation for the protocol, prove its safety, analyze its live-
ness and availability properties, and evaluate a working
implementation.

1 Introduction
Datacenter services are usually scaled out by hori-
zontally partitioning their data into multiple more-or-
less independent shards that are then replicated for en-
hanced availability and failure tolerance. With replica-
tion comes the question of consistency. A strongly con-
sistent replicated system behaves, logically, identical to
its unreplicated counterpart. However, many large-scale
fault-tolerant services used in datacenters today provide
weaker consistency guarantees such as eventual [42, 4]
or causal [27] consistency, which provide easy scale-out
and predictable performance in the face of crash fail-

Copyright c© 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of portions of this
work for personal or classroom use is granted without fee provided
that the copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the first
page in print or the first screen in digital media. Copyrights for com-
ponents of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific per-
mission and/or a fee.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1.
http://dx.doi.org/10.1145/2523616.2523623

ures or overload. While relaxed consistency is useful in
many contexts, programming against weakly consistent
services is difficult.

Strongly consistent services have recently made a
comeback with Spanner, Megastore and Scatter [11, 5,
16] having previously been considered hard to imple-
ment, unscalable or expensive to operate. These services
are carefully designed to provide availability and per-
formance, even though the replicas must coordinate all
operations among themselves.

However, a prominent challenge brought on by scale
is configuration management. Node reconfiguration in
strongly consistent services usually relies on an exter-
nal replicated and failure-tolerant centralized config-
uration management service (CCM), such as Chubby
and ZooKeeper [10, 20]. Internally, most CCMs use a
state machine replication protocol, such as Paxos or Zab
[24, 31].

In this paper, we ask if strongly consistent services
can provide flexible and easy reconfiguration by lever-
aging the shards themselves. The idea is to make the
system shards serve a dual purpose: to store application
state, and to manage the configuration of other shards.
Furthermore, the mechanism can make weaker availabil-
ity assumptions about the replicated shards than modern
CCMs can make for their internal consensus protocols.

Elastic replication. We develop these ideas into a
new scheme for replicating sharded services that we
call elastic replication. The main contribution of elas-
tic replication is that reconfiguration is both simple and
adaptable. A replicated object’s configuration is sepa-
rated from its state, and the object can only be recon-
figured by dictation from an external entity. This inde-
pendence of state and configuration relieves the need for
solving consensus to reconfigure the service.

Our protocol makes the following minimal assump-
tions about the availability of shards at any point in time.

(A1) Each shard has at least one non-faulty replica.
(A2) There is at least one shard with no faulty replicas.

A novelty of elastic replication is that shards are used
to reconfigure each other in response to failure without
the need to use a configuration master, as in Vertical
Paxos [25] or other existing systems. Shards are orga-
nized into monitoring/reconfiguration rings called elas-
tic bands. Each shard belongs to one ring and monitors
the successive shard on the ring. Because of this design,
and the use of shards to issue new configurations, re-
configuration does not require running an instance of a
consensus algorithm as long as there exists at least one
non-faulty shard in the band (A2). External intervention
is required only if all shards are faulty.

Elastic replication offers the following benefits, which
we will demonstrate throughout the paper:

• Customizable consistency. Strong consistency
guarantees such as linearizability [19] are provided
to applications that need them, while other appli-
cations receive improved timeliness, particularly in
the face of network partitioning, in exchange for
weaker guarantees [12, 30, 43, 42].
• Minimal cost of replication. In order to survive f

failures, no more than f + 1 replicas are required,
and message and computational overheads are low.
• Robust consistency. Consistency does not depend

on accurate detection of failures — pinging meth-
ods may lead to false positives in systems that lack
real-time guarantees [37].
• Smooth reconfiguration. Reconfiguration does not

violate consistency guarantees [34], and is both fast
and straightforward.

Our paper makes the following contributions:

• We specify a new distributed replication protocol
with strong consistency guarantees;
• We formally prove the safety of our protocol and

analyze its scalability;
• Through experimental analysis, we demonstrate

that the protocol we show that the protocol can be
used to build scalable and highly reliable services
that support easy reconfiguration.

2 Background and Related Work
The replication and consistency semantics of distributed
systems is an active field of research. Much of the related
work will be discussed throughout the paper, however
we lay some preliminaries here.

Replication. Modern datacenter services rely primar-
ily on two approaches to replication: Primary-backup
and quorum intersection protocols. Primary-backup [1,
9] is used in systems such as GFS and HDFS [15, 38].
A primary replica receives all updates, orders them, and

forwards them in FIFO order to the non-faulty backup
replicas. In case of an unresponsive primary, another
replica may become primary when reconfigured by a
configuration management service. If the original pri-
mary was mistakenly suspected of having failed, a client
may read the result of some update operation to the orig-
inal primary that is not applied, and never will be, to the
new primary, resulting in divergence. In order to avoid
the likelihood of divergence, clients track the current
active configuration as maintained by the configuration
manager.

Quorum Intersection protocols are particularly useful
for put/get-type Key-Value Stores such as Amazon’s Dy-
namo and Apache Cassandra [13, 22]. A put operation,
accompanied by a timestamp, is sent to a “put-quorum,”
while a get operation reads from a “get-quorum” (and
returns the result with the highest timestamp). By mak-
ing quorums smaller than the entire set of replicas, avail-
ability and performance are achieved. By guaranteeing
that any put-quorum and get-quorum intersect, a get can
be guaranteed to see the latest completed put operation.
However, divergence can still occur in the case of dy-
namic reconfiguration of replicas as quorums may tem-
porarily fail to intersect [13].

Strong consistency. Relaxed consistency guarantees
have enabled the large-scale distributed systems of to-
day’s cloud computing environments. However, the lack
of consistency is not suitable for all applications. Even
for current cloud applications, developers usually pre-
tend they are dealing with consistent data regardless of
the consistency guarantees provided, simply because it
is often hard to program against relaxed consistency.

Current strong consistency protocols rely on majority
voting techniques where 2 f + 1 replicas are required to
tolerate f failures. Using 2 f + 1 replicas, as is the case
in Paxos and Quorum Replication systems, is not only
expensive in terms of resources, but it is also harder to
ensure that the larger number of replicas fail indepen-
dently. Also, reconfiguration—important to service ex-
pansion, migration, or software updates in the cloud—is
difficult while maintaining strong consistency.

Failure detection. Primary-backup assumes a fail-
stop model with perfect failure detection. In practice,
timeouts are often used to detect failures in these proto-
cols and the choice of timeout values results in a trade-
off between the liveness and safety of the system. Elas-
tic replication only assumes crash-failures with imper-
fect failure detection, and the choice of timeout values
does not impact safety. Even with a centralized config-
uration manager like Zookeeper or Chubby there could
be a delay until all clients learn of a new configuration
as demonstrated in Figure 1. In this experiment, we used
Zookeeper to manage the configuration of a replicated
service, forced a configuration change, and measured the

0

200

400

600

800

1000

1200

100 500 1000

D
el

ay
 a

fte
r

fir
st

 c
lie

nt
 (

m
se

c)
!

Number of clients!

90th Percentile!
99th Percentile!

Figure 1: Delay between first client being notified of a config-
uration change and the 90th and 99th percentile being notified.
This delay can result in divergence or inconsistency.

latency until 90% and 99% of the clients get notified
of the new configuration after the first client is notified.
Late notifications about changes could result in incon-
sistencies if clients interact with a defunct primary or an
old replica. As we’ll later show, elastic replication uses
a technique called wedging to ensure this never happens.

Reconfiguration. Various scalable peer-to-peer stor-
age systems have proposed separating configuration
from storage for improved consistency [33, 32, 26, 28].
Similarly, Vertical Paxos (VP) [25] uses an auxiliary
configuration master to reconfigure primary-backup or
read/write quorums. Another such approach is Dynamic
Service Replication [7], a mixture of consensus and vir-
tual synchrony-based [8] replication strategies. There
are two important differences between these works and
elastic replication. First, they rely on a majority-based
consensus protocol for reconfiguration, whereas elastic
replication does not. Second, they use consensus not
only to agree on the sequence of configurations, but also
to agree on the initial application state in each configura-
tion. In elastic replication, replicas can be reconfigured
without updating their application state.

In cloud services, centralized configuration services
such as Chubby [10] and ZooKeeper [20] are increas-
ingly common. Note that these configuration services
use majority-based consensus protocols to serialize con-
figurations, while the systems they manage rarely pro-
vide strong consistency guarantees. Also, many of these
services provide only atomic read/write operations,
while elastic replication supports the full deterministic
state machine model. Elastic replication is best consid-
ered a scalable instantiation of the Replicated State Ma-
chine (RSM) approach [23, 36] in which a collection of
replicas apply the same operations in the same order.

Our work is similar to Vertical Paxos in that the repli-
cated state is separate from the configuration. However,
unlike Vertical Paxos, we do not rely on an external con-
figuration master to reconfigure. Additionally, we do not
require running an instance of the consensus protocol to

reconfigure. Furthermore, our approach is novel in its
use of shards to monitor and reconfigure each other.

Scatter [16] is another system that is related to our
design. Scatter uses a ring of shards and provides lin-
earizable consistency. Like elastic replication, Scatter
also spreads the task of managing shard configurations
on other shards. However, there are important differ-
ences between Scatter and elastic replication. Scatter
uses Paxos in each shard, and reconfiguring a shard is
done via a two-phase commit transaction that runs across
the shards. This is not the case in our protocol. Addi-
tionally, compared to elastic replication, Scatter requires
almost double the number of replicas (2 f +1 instead of
f +1).

3 Elastic Replication
In this section, we specify, refine, and compare elastic
replication to other replication protocols. A formal proof
of the protocol’s safety is provided in the attached ap-
pendix.

Environment Model. An asynchronous environment
is assumed with no bounds on processing times or mes-
sage delays. Failures are assumed to be either crash or
omission failures (although the method can be general-
ized to Byzantine failures as well [40]).

We develop elastic replication in steps. First, we show
how a single shard can be replicated assuming a se-
quence of configurations that is defined a priori. Next,
we show how collections of shards can manage the con-
figurations of one another. Our discussion starts with
a high-level specification which is then refined. Sec-
tion 3.5 describes an actual implementation of elastic
replication.

3.1 Replicating Single Shards
We model the state of a shard as a finite history of op-
erations: H = o1 :: o2 :: o3 :: ... where H is initially
empty.

The only operation possible on this high-level shard is
to add a sequence of operations to its history. A shard can
then be specified as follows (the operator · concatenates
two sequences):

specification Shard:
transition apply(S):

action: H := H ·S

To make the shard highly available, we use replica-
tion and dynamically change the configuration of repli-
cas in order to deal with crash failures and unresponsive-
ness. For now, assume the existence of an unbounded
sequence of configurations C = C1 :: C2 :: C3 :: The

boolean function succ(C,C′) evaluates to true if and
only if C′ directly follows C in C . Each configuration Ci
consists of the following:

• Ci.replicas: a set of replicas; and
• Ci.orderer: a designated replica in Ci.replicas.

For simplicity, we will initially assume that the repli-
cas of any two configurations are disjoint. Later, we will
drop this impractical assumption. We call replicas of the
same configuration peers. In order to tolerate up to f
failures, each configuration needs at least f + 1 inde-
pendently failing replicas. A replica r has the following
state:

• r.conf: the configuration this replica belongs to;
• r.orderer: the orderer of this configuration;
• r.mode: is either PENDING, ACTIVE, or
IMMUTABLE. Initially all replicas in C1 are
ACTIVE, while replicas in other configurations are
all PENDING;
• r.history: a sequence of operations o1 :: o2 :: In

practice, replicas maintain a running state, but this
model is easier to understand;
• r.stable: the length of a prefix of the history that r

knows to be persistent (initially 0). The inequality
0≤ r.stable≤ length(r.history) always holds.

Let gcp(C) be the greatest common prefix of the his-
tories of the replicas of configuration C. In the appendix
we formally show that the greatest common prefix of the
histories of a configuration’s replicas is persistent.

Figure 2 shows five atomic transitions that are al-
lowed:

1. addOp(r,o): if r is an active orderer of a config-
uration, it is allowed to add an operation o to its
history;

2. adoptHistory(r): a non-immutable replica r
may adopt the history of the orderer in its configu-
ration as long as the orderer has a stable prefix that
is at least as long as that of the replica;

3. learnPersistence(r,s): an active replica r
may extend its stable prefix up to the greatest com-
mon prefix of all histories of its peers;

4. wedgeState(r): an active replica r may cease
operation, giving way to the next configuration
making progress;

5. inheritHistory(r,r′): a pending replica r may
assume the history of an immutable replica r′ in the
prior configuration and become active.

The transitions specify what actions are safe (ensure
persistence), but not when or in what order to do them.

specification Replicas:
transition addOp(r,o):

precondition:
r.mode = ACTIVE∧ r = r.orderer

action:
r.history := r.history :: o

transition adoptHistory(r):
precondition:

r.mode 6= IMMUTABLE ∧
r.orderer.mode 6= PENDING ∧
r.history 6= r.orderer.history ∧
r.stable≤ r.orderer.stable

action:
r.history := r.orderer.history
r.stable := r.orderer.stable

transition learnPersistence(r,s):
precondition:

r.mode = ACTIVE∧ r.stable < s≤ gcp(r.conf)
action:

r.stable := s

transition wedgeState(r):
precondition:

r.mode = ACTIVE
action:

r.mode := IMMUTABLE

transition inheritHistory(r,r′):
precondition:

r.mode = PENDING∧ succ(r′.conf,r.conf) ∧
r′.mode = IMMUTABLE

action:
r.mode := ACTIVE
r.history := r′.history
r.stable := r′.stable

Figure 2: Specification of replicas.

We now sketch in a more operational manner when non-
faulty replicas perform transitions in the specification
above.

Clients send operations to an active orderer, which
will add each received operation to its history (possibly
filtering out duplicates). This corresponds to the addOp
transition. Note that we are not ruling out that there ex-
ist multiple active orderers of different configurations.
However, as we will prove in the appendix, only one
configuration at a time will be composed of all active
replicas.

The goal of an active orderer is to get its peers to
accept its history. Upon becoming active, and upon
adding operations to its history, the orderer will notify
its peers. Corresponding to the adoptHistory transi-
tion, a non-immutable replica will adopt the history of
the orderer if the orderer has a stable prefix that is at
least as long as its own stable prefix —it is an invari-

ant that replicas never truncate their stable prefix. Note
that our specification does not say how operations are
distributed, providing flexibility to the implementation.

As soon as an operation is in the history of all peers
of a configuration, it is persistent. Replicas can only act
upon an operation once they learn it is persistent. The
way this could be done is as follows: After receiving a
request to adopt the history of the orderer, the replica
returns the length of the common prefix of its history
with that of the orderer. If an orderer receives a response
from all its peers, it can calculate the minimum and in-
crease its stable prefix accordingly (corresponding to the
learnPersistence transition). The orderer would
then notify its peers, who can then update their stable
prefix as well (also learnPersistence).

If an active replica suspects that one of its peers
is faulty, it goes into immutable mode (wedgeState
transition). Once immutable, the state of a replica r
can no longer change and only operations already in
r.history can become persistent in its configuration.
Replicas in the subsequent configuration can transition
from pending to active mode using the history of an im-
mutable replica (the inheritHistory transition), as
described below, and continue to make progress.

3.2 Liveness

As we have indicated, if an active replica suspects that
one of its peers is faulty, it becomes immutable. For
this, we need to assume that correct replicas eventu-
ally suspect faulty peers, something that can be imple-
mented with a simple pinging protocol. As safety does
not assume accurate failure detection, the pinging proto-
col can use aggressive timeouts in order to detect failures
quickly.

Theoretically, liveness of a single shard depends on
there existing a configuration in C consisting only of
correct replicas that never suspect one another. Such an
assumption is necessary in an asynchronous environ-
ment; indeed, if we could show liveness without such
an assumption, we would violate the FLP impossibility
result [14]. For now, we will argue that a shard can make
progress given this assumption.

Let C be the first configuration in C with correct repli-
cas that never suspect one another of failure. If C is
the first configuration in C , then liveness follows eas-
ily: All replicas are active and none of them will become
immutable by our assumptions. If C is not the first in
C , then let C ′ be the sequence of configurations before
C. The first configuration in C ′ has at least one correct
replica that will become immutable, and thus the pend-
ing replicas in the next configuration in C ′ can become
active and inherit its history. This continues until finally
there is a correct replica in the predecessor configura-

Figure 3: Example of an elastic band. Each (replicated) shard
is sequenced by its predecessor on the band as indicated by the
arrows. The sequencer of a shard issues new configurations
when needed.

tion to C that becomes immutable. Thus all replicas in C
can become active, and then it is clear that it can make
progress from then on, as none of these replicas will ever
become immutable by assumption.

3.3 Elastic Bands

Thus far we have assumed that there is a single repli-
cated shard, and that its unbounded sequence of config-
urations is determined a priori. We will now drop these
assumptions and instead assume a dynamic collection
of shards X . Logically, each shard x ∈ X has a se-
quencer that determines its sequence of configurations.
A sequencer can be further subdivided into two distinct
functions: sequencing mechanism and policy.

The sequencing mechanism aspect ensures that for ev-
ery shard there is a sequence of configurations that never
branches. The policy function determines when the con-
figuration needs to be changed and what the new con-
figuration should be in accordance with the deployment
policy. In this section, we will focus only on the sequenc-
ing mechanism as discussion of deployment policies is
beyond the scope of this paper.

In elastic replication, the sequencing of configurations
of a shard x is accomplished by another shard x′. Shards
are organized into one or more circular elastic bands,
with the configuration of any shard x on a band being se-
quenced by exactly one other shard x′ on the same band;
its predecessor shard in the band. As a shard can have
only one sequencer, a shard cannot be on two different
bands at once. Also, as shards cannot sequence them-
selves, each band has at least two shards on it. Figure 3
depicts an elastic band.

Each shard has dual responsibilities: to store and ma-
nipulate the application-specific state of its replicated
state machine, and to issue new configurations for its
successor shard in the band when needed —e.g. in re-
sponse to failure.

We will now describe the shard sequencing interface.
Let x.id be a unique identifier for shard x. The sequenc-
ing interface then consists of two operations:

• s.putConf(x.id,config): this makes s the sequencer
of x, with config the current configuration of x;
• s.getConf(x.id): if shard s has the configuration of

x, it will stop being the sequencer for x and return
the configuration of x. Otherwise, s will return an
error.

A configuration itself consists of a tuple 〈id, index, lo-
cations, orderer〉. Here id is the shard identifier, index is
the index in its sequence of configurations, locations is
a set of host identifiers (e.g. TCP/IP addresses), and or-
derer is the host in locations that runs the orderer replica.

It is easy to insert into and remove shards from a band.
Doing so would be under the control of a configuration
management agent m, itself an object in a shard. Con-
sider shards x and x′ on a band, with x the sequencer of
x′. To insert a shard y in between x and x′, m first ob-
tains the configuration of x′ from x using getConf, and
then puts the configuration into y using putConf. Then
m puts the configuration of y into x using putConf. This
concludes inserting a new shard into the band. Note that
even though shard y is the new sequencer of x′, shard
x′ does not need to be notified of the change since se-
quencing is a one-way relationship. Additionally, note
that m can only do this if it has the configuration of y,
and should only do this if y does not have a sequencer
already.

To remove y, m first gets the configuration x′ from y,
and then puts this configuration into x, making x the se-
quencer of x′. Finally, m can get the configuration of y
from x, and destroy y or put its configuration at a new
sequencer.

For liveness, we assume that at any time (A1) for any
band, each shard contains at least one correct replica,
and that (A2) each band has at least one shard that has
no faulty replicas. (A1) is a standard safety assumption
made by all replication protocols, and it is satisfied by
having f + 1 replicas per shard if f replicas can fail si-
multaneously. (A2) is required because shards are recon-
figured by other shards on the same band rather than an
external centralized configuration management service
(CCM). In systems where shards are reconfigured by a
CCM, (A2) is replaced by an assumption:

(A3) The centralized configuration manager does not
fail.

In section 4.1 we will provide an exact formulation
of the probability that (A1) and (A2) are met, compare
that to the probability that (A3) is met, and show that
organizing shards into elastic bands can result in higher
reliability compared to using a CCM.

specification Replicas++:
transition inheritHistory2(r,C):

precondition:
r.mode 6= PENDING∧ succ(r.conf,C) ∧
r ∈C.replicas

action:
r.mode := ACTIVE
r.conf :=C

transition inheritHistory3(r,r′):
precondition:

r.mode = PENDING∧ r′.conf = r.conf ∧
r′.mode 6= PENDING

action:
r.mode := ACTIVE
r.history := r′.history
r.stable := r′.stable

Figure 4: Additional transitions allowed for replicas.

3.4 Practical Considerations

To simplify presentation, we have assumed that succes-
sive configurations do not overlap, that is, they have no
replicas in common. We now show how we can drop this
impractical assumption by adding two more transitions
to the specification, shown in Figure 4.

The transition inheritHistory2(r,C) allows a
replica that is not pending to move from configuration
r.conf to the successor configuration C. It inherits its own
history, and does not become immutable. This, however,
presents a problem, as other replicas in C may now not
have an immutable replica in the previous configuration
to inherit state from. The extended specification solves
this by allowing pending replicas to inherit state from
non-pending peers in the same configuration (transition
inheritHistory3(r,r′)).

Another impractical simplification we made for ease
of specification is that replicas maintain the entire his-
tory of operations. However, instead of the stable part of
the history, replicas can maintain a running state. This
is possible because the stable part of the history is per-
sistent and never has to be undone. Replicas will need
to queue the remaining operations until they are known
to be stable or maintain a running state with a log of
“undo” operations in order to be able to roll back. The
latter would make it possible for applications to support
weakly consistent semantics where updates are exposed
quickly but are not known to be persistent.

Finally, we have not optimized read-only operations
in any way—so far they have been treated as any other
command. In practice, read-only operations do not have
to become persistent as they do not affect the running
state of an application. In case linearizable semantics are
needed, a replica can handle a read-only command as

soon as the update operations that precede it are known
to be persistent. If sequential consistency suffices, read-
only operations can be handled upon arrival at a replica.

3.5 Implementation

As mentioned in Section 3.1, our specification does not
include how operations are distributed to replicas. In our
implementation we organized replicas within a shard in
a chain akin to chain replication (CR). We chose this
construction due to the simplicity of CR and its high
throughput properties.

The orderer is the head of the chain, and it sends op-
erations along the chain. Each replica on the chain adds
the operations to its history. When the tail replica adds
an operation to its history, all replicas have the opera-
tions in their histories and thus the operation is persis-
tent. This allows the tail to respond to the client. The
tail then sends an acknowledgment along the chain in
the other direction so that other replicas can also learn
that the operation is persistent and apply the operation
to their state.

While similar, there are some important differences
between elastic replication (ER) and the original CR:

• in ER, when a replica is unresponsive, a new chain
is configured, possibly with a new collection of
replicas. In CR, faulty replicas are removed from
a chain and new replicas added to the end of the
chain. The reason behind this difference is that CR
assumes a fail-stop model [35] in which failures
are detected accurately, whereas ER assumes that
crashes cannot be detected accurately—a weaker
assumption;
• in ER, read-only operations have to be ordered just

like any other updates, whereas in CR clients can
read directly from the tail. Again, this is because of
the lack of accurate failure detection in our model:
if the tail were incorrectly suspected of failure and
the chain reconfigured, the tail’s state would be-
come stale without it knowing that its configura-
tion is no longer current. In ER, old configuration
are wedged and even read operations cannot be ser-
viced by it. This apparent inefficiency of ER can be
addressed by using leases [17] to obtain the same
read efficiency as CR.

There are some subtle issues to consider when a chain
is reconfigured, because each chain must satisfy the CR
invariant that a server to the left in a chain has a longer
history than a server to the right [41]. ER thus ensures
that when a chain is reconfigured, the replicas that were
in the old configuration appear at the beginning (the left)
in the new chain in the same order as in the old configu-

ration, while new replicas appear at the end of the chain
with an initially empty history.

Our shard implementation is similar to CRC Shuttle
implementation of Byzantine CR. However, Byzantine
CR relies on an external configuration master, while ER
delegates reconfiguration to other shards on the elastic
band.

For increased efficiency, we can exploit parallel ac-
cess and allow clients to read from any replica, at the
cost of a weaker semantics. If clients read the stable run-
ning state of any replica, they know the state is persistent
but possibly stale. If clients read the full history of any
replica, then they are not guaranteed that the state is per-
sistent or that the order of operations stays the same. It is
up to the application programmer to know whether such
weaker semantics are acceptable.

3.6 Reconfiguration Discussion

Thus far we have described the transitions involved in re-
configuring a shard and the sequencing relationship be-
tween shards in an elastic band. We now elaborate on
reconfiguration in elastic replication.

Reconfiguration prompts several natural questions:
How is a new shard configuration chosen? How is the
new replica membership set? How is the next configu-
ration orderer selected? These concerns are matters of
policy rather than of mechanism. Elastic replication sep-
arates mechanism from policy [6] and is only focused on
mechanism issues. Thus, any configuration with any set
of replicas and any orderer could be chosen to reconfig-
ure an existing shard without compromising correctness.
In fact, the sequencing shard could be reading a prede-
termined list of configurations off a disk and it would not
impact system safety.

In our implementation, when a replica is being un-
responsive, we immediately restore service by wedg-
ing the replica’s current configuration and issuing a new
configuration. The new configuration is simply the old
configuration with the unresponsive replica removed.
The overhead is the same as that of any update opera-
tion on the sequencer shard. Next, in order to restore the
original fault tolerance, a new replica is allocated, placed
at the end of the chain, and set to inherit the state of a
replica in the current configuration in the background.
Finally, once the new replica has the same persistent
history as a replica in the current configuration, the se-
quencer wedges the current shard configuration and is-
sues a new configuration with the new replica at the tail
of the chain of the old configuration.

By construction, replicas in a new configuration can
inherit the state of any wedged replica in the predeces-
sor configuration. In our implementation, replicas of a
new shard configuration issue an anycast request to all

PB/CR QI Paxos Vertical Paxos CRC Shuttle ER
minimum # replicas needed f +1 2 f +1 2 f +1 f +1 f +1 f +1
strongest consistency provided linearizable atomic R/W linearizable linearizable linearizable linearizable
requires accurate fault detection yes no no no no no
uses timeouts for liveness yes no yes yes yes yes
requires external configuration no no no yes yes no
signatures required none none none none CRC none

Table 1: Comparison of Primary-Backup (PB), Chain Replication (CR), Quorum Intersection (QI), Paxos, Vertical Paxos, Byzan-
tine Chain Replication (CRC Shuttle), and Elastic Replication (ER) protocols.

replicas of the predecessor configuration and adopt the
history of the first responder.

If a sequencer fails during reconfiguration, system
safety is not compromised. This is because elastic repli-
cation requires all replicas of a configuration to be active
for any replica to change its persistent history. Replicas
of a configuration become active only by successfully in-
heriting the history of a replica in a prior configuration.
Thus, the worst thing a failed sequencer can do is to ne-
glect to notify all the new replicas of a configuration to
inherit the state of their predecessor configuration which
would result in an inactive shard configuration.

Elastic replication assumes that clients learn about
shards and their configuration through out-of-band rout-
ing methods. Clients include the expected configuration
id with their requests. If a replica receives a request with
an out-of-date configuration id, it ignores the request and
responds to the client with its current configuration.

3.7 Comparing ER with Other Protocols
We now briefly discuss how elastic replication (ER)
compares to other crash-tolerant replication protocols
such as Primary-Backup (PB) [1, 9], Chain Replica-
tion (CR) [41], asynchronous consensus techniques such
as Paxos [24], Vertical Paxos [25], and Quorum Inter-
section (QI) techniques that provide strong consistency
such as [39, 18, 3]. We also compare against the CRC
Shuttle implementation of Byzantine Chain Replication
which only tolerates crash and omission failures [40]. A
summary is provided in Table 1.

PB and CR depend on accurate failure detection (aka
fail-stop [35]). However, in practice, failure detection is
implemented using timeouts. If timeouts are chosen con-
servatively, the probability of mistakes is small, but in
the case of a failure, service availability is substantial.
If timeouts are chosen aggressively short, outages are
short, but mistakes are common and lead to inconsis-
tencies (multiple primaries in the case of PB, or multiple
chains in the case of CR).

Paxos, Vertical Paxos, CRC Shuttle, and ER do not
suffer from this safety defect since they do not depend on
failure detection being accurate. However, they all rely

on failure detection for liveness. In Paxos, a faulty leader
must eventually be replaced by another causing a so-
called view change, while in Vertical Paxos, CRC Shut-
tle and ER, a faulty replica must eventually be replaced,
leading to a reconfiguration. The time to recover from a
failure depends much on the timeout used to detect fail-
ures. If chosen conservatively, outages can be substantial
in either case. But aggressively chosen timers can lead
to starvation. In practice, timers should be adaptive so
they are as short as practical, but no shorter. Compared
to ER, Paxos requires 2 f + 1 replicas instead of only
f + 11. Vertical Paxos requires only f + 1 replicas for
the read/write quorums but it relies on an auxiliary con-
figuration master for reconfiguration. Byzantine Chain
Replication provides two protocols: CRC Shuttle (which
tolerates crash and omission failures) and HMAC Shut-
tle (which tolerates arbitrary failures). The specification
of CRC Shuttle is similar to a single shard in ER, how-
ever it relies on an external configuration manager for
reconfiguration while ER does not.

Finally, QI techniques do not rely on accurate fail-
ure detection and can completely mask failures alto-
gether, requiring no timeouts. They are, however, limited
in what operations they can support, and typically sup-
port only read and overwrite operations on file-like ob-
jects, and provide atomic read/write register consistency.
See [21] for a comparison of quorum replication to other
replication techniques. Also, consistent read operations
are relatively expensive, as they require two round-trips.

Like Paxos and other consensus techniques, QI pro-
tocols are based on majority voting and thus require a
relatively large number of replicas. As in Paxos, tech-
niques exist to make f of the replicas light-weight [29].
Nonetheless, such light-weight replicas still require in-
dependently failing resources (for a total of 2 f +1). On
the other hand, ER leverages the situation that there are
many shards, each having f +1 replicas. replication.

Any of these techniques can be made scalable through
partitioning of data, as both linearizability and atomic

1In Paxos terms, there are 2 f +1 acceptors and f +1 learners that
are typically co-located with acceptors. As acceptors have to maintain
state for every command in the history, we consider them replicas.

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

 0 50 100 150 200 250 300

D
o
w

n
 p

ro
b
a
b
ili

ty

Number of nodes

3 nodes/shard
4 nodes/shard
5 nodes/shard

Figure 5: Probability that the liveness condition is not met
(band requires external intervention) as a function of the num-
ber of nodes and size of shards. Shard replicas are assumed to
be up with probability p = 0.99.

R/W register semantics are composable. Also, all these
techniques support weak forms of consistency for im-
proved efficiency and liveness, for example by allowing
any replica to be read and buffering write operations at
any replica [43].

4 Evaluation
In this section we evaluate elastic replication analytically
and experimentally. First, we analytically formulate the
probability that the liveness condition for elastic repli-
cation is met, show its implication on system reliability,
and compare the reliability of elastic replication with tra-
ditional methods using CCMs. Next, we benchmark a
prototype distributed key-value store built using elastic
replication .

4.1 Liveness Condition
In elastic replication, we require for liveness that (A1)
for any band, each shard contains at least one correct
replica, and that (A2) each band has at least one shard
that has no faulty replicas. This leads to an interesting
trade-off: the smaller the band, the more likely that as-
sumption (A1) holds, whereas the larger the band, the
more likely that assumption (A2) holds.

Another variable involved here is n, the number of
replicas in a shard. It suffers from a similar trade-off.
The larger n is, the more likely that at least one replica is
correct, but the less likely that there exists a shard con-
sisting of only correct replicas.

Let p stand for the probability that a particular replica
is up, and let all configurations of all shards have a dif-
ferent set of replicas with independent failure probabili-
ties. Let n = f +1 be the number of replicas in a shard.
Then let Pc = pn be the probability that a shard is correct
(all replicas are up). Let Ps = ∑

n−1
i=1

(n
i

)
pi(1− p)n−i =

1− (1− p)n−Pc stand for the probability that a shard

1e-06

1e-05

0.0001

 50 100 150 200 250 300

D
o
w

n
 p

ro
b
a
b
ili

ty

Number of nodes

CCM
Elastic Replication

Figure 6: Probability that a system gets stuck requiring ex-
ternal intervention. An elastic replication deployment is com-
pared to a collection of shards managed by a CCM comprised
of 5 replicas. Each shard has 3 replicas. All nodes are assumed
to have 99% uptime.

is safe (between 1 and n−1 replicas are up). If N stands
for the number of shards on the band, then the probabil-
ity that at least one shard has only correct replicas while
the other shards each have at least one correct replica is:

P(p,n,N) =
N

∑
i=1

(
N
i

)
Pi

c ·PN−i
s (1)

This is exactly the probability that the liveness con-
dition is met, and typically one would require that
P(p,n,N)≥ (1− ε) for some small constant ε . We ana-
lyze this probability in more detail in Appendix B. If the
liveness condition is not met, the system would require
external intervention to get “unstuck”.

To demonstrate the feasibility of meeting the liveness
condition, Figure 5 plots 1− P(0.99,n,N) for various
shard sizes (n) and number of shards (N). The sharp dip
followed by slow rise seen in Figure 5 demonstrates the
tension between shard size and number of shards on the
probability of meeting the liveness condition.

4.2 Elastic Replication vs. CCM

Elastic replication delegates the task of managing con-
figurations to the shards in the system. Is this more re-
liable than using a CCM to manage the configuration of
shards directly?

A sharded service managed by a CCM still has to meet
liveness condition (A1), but condition (A2) is replaced
with (A3): the centralized configuration manager does
not fail. A replicated CCM running a quorum-based con-
sensus protocol requires more than half of its replicas to
be up for liveness. Let m be the number of nodes in a
CCM and p the probability that a replica is up, then

Q(p,m) =
m

∑
i=b1+m/2c

(
m
i

)
pi · (1− p)m−i

Read Write
Throughput (ops/sec) 16,385 12,894
Latency (msec) 6.64 8.94

Table 2: Performance of a single stand-alone instance of our
example storage server servicing read/write requests of 2KB
objects from a network client and storing them in an Erlang
DETS on disk.

is the probability that a replicated CCM is up. Then
the probability that a CCM-managed system does not re-
quire external intervention, is precisely probability that
(A1) and (A3) are met:

Q(p,m) ·

(
1−

N

∑
i=1

(
N
i

)
(1− p)i·n · (1− (1− p)n)N−i

)

Figure 6 compares the likelihood that an external in-
tervention is required (the liveness condition is not met)
for an elastic band and a CCM-managed system. As the
figure shows, a single self-managing elastic band is more
reliable than a CCM for systems with more than 10 repli-
cas.

4.3 Experimental setup
We now aim to highlight the performance characteristics
of elastic replication . To that extent, we developed an
application library that implements multiple replication
protocols. The library defines a state machine interface
that user modules implement. The interface is comprised
of functions to handle client commands as well as to ini-
tialize, export, and import the user module’s state.

The library is written in Erlang [2], and our following
examples build a simple distributed service that stores
and retrieves binary data to/from disk. The service is im-
plemented as a server module that relies on our library
for replication and sharding. Our focus is on the protocol
layer, so the implementation relies on Erlang’s built-in
Disk Term Storage abstraction (DETS) for storage2. To
put our results in perspective, Table 2 shows the perfor-
mance profile of running a stand-alone instance of our
system on a single server servicing read and write re-
quests for 2KB objects from a network client.

Our experiments ran on a 25-machine cluster. Each
machine had an Intel Xeon Quad Core processor, 4GB of
RAM, a 250GB SATA drive, and a quad port PCIe Intel
Gigabit Ethernet card. The machines ran 64-bit Ubuntu
12.04 and Erlang R16B. The machines were connected
via a Gigabit Ethernet network. Graph results represent
the average of 10 runs and the error bars represent a stan-
dard deviation unit.

2DETS tables are also used in the Mnesia distributed DBMS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2 4 6 8 10 12

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Shard size

Read
Write

Figure 7: Average read/write throughput of per shard for elas-
tic replication as a function of the number of replicas.

4.4 Single Shard Performance
We first evaluate the performance of a single shard in
isolation as a function of the number of its replicas. Fig-
ure 7 shows the average read and write throughput for
a single shard processing requests from 100 concurrent
clients storing and retrieving 2KB objects. Our imple-
mentation of elastic replication is based on chain replica-
tion and thus exhibits similar throughput characteristics.
The throughput of a replicated shard closely matches
that of a single unreplicated server.

A concern with elastic replication is that in order to
guarantee linearizable consistency in the presence of
failures, requests must be propagated to all replicas in
a configuration before they get executed. This applies to
both read and write requests. How costly is it to propa-
gate read requests to all replicas instead of just one?

To mitigate that potential cost, our implementation
tags each request with the index number of the config-
uration that the client assumes the shard is in. Before
forwarding a command, each elastic replica checks that
the tagged version number matches its own. If not, the
request is dropped and the client is notified of the new
configuration. With that, non-tail replicas handle read re-
quests by just checking the request tag before forward-
ing it to their chain successor (without adding the request
to the local unstable history queue or executing). When
the tail receives a request, it checks the tag and responds
to the client. This is a slight deviation from the original
specification of elastic replication which is agnostic to
read/write request, but it results in a performance benefit
without compromising semantics.

In our implementation, the cost of piping read re-
quests to replicas was dominated by the cost of reading
from the disk store at the tail. To demonstrate the cost
of propagating read requests, we made our clients send
“ping read” requests to the replicated shard. These re-
quests are treated by the replication protocol as a normal
read request, but the underlying server responds with-
out engaging the disk store. Figures 8 and 9 show the
latency and throughput of handling ping read requests

 0

 2

 4

 6

 8

 10

 1 2 3 4 5

L
a
te

n
c
y
 (

m
s
e
c
)

Shard size

Elastic Replication
Chain Replication

Figure 8: 95th percentile latency for ping read requests per
shard as a function of the number replicas.

 25000

 27500

 30000

 32500

 35000

 1 2 3 4 5

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Shard size

Chain Replication
Elastic Replication

Figure 9: Average throughput of ping read requests per shard
as a function of the number replicas.

using both elastic replication and chain replication. As
the figures demonstrate, the overhead of piping read re-
quests through the chain is small. Elastic replication per-
forms comparably to chain replication. The added cost is
well within the margin of error.

The main takeaway here is that elastic replication has
the same high performance characteristics of chain repli-
cation with minimal overhead cost.

4.5 Band Maintenance

Because a shard’s configuration is separated from the ac-
tual state, reconfiguration in elastic replication is cheap.
Figure 10 shows a simple elastic band being reconfig-
ured to add/remove a shard every 20 seconds. This op-
eration is trivial and barely has any impact on system
throughput beyond the effects of adding or removing a
shard.

Another technique for reconfiguring an elastic band is
by way of merging/splitting shards. This allows part of
the state of a large shard to be transfered to a new shard.
Figure 11 shows the impact of splitting/merging a shard
every 20 seconds on an elastic band. The cost of merg-
ing shards is more considerable than just removing them
because of state transfer. However, in our implementa-
tion, state is transfered in the background to mitigate the
potential high cost.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Time (sec)

Adding Shards
Removing Shards

Figure 10: Impact of reconfiguration to add/remove shards on
aggregate throughput. A partition was added/removed to the
system every 20 seconds. When adding shards, the band origi-
nally had 2 shards, and when removing it started with 4 shards.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Time (sec)

Splitting Shards
Merging Shards

Figure 11: Impact of reconfiguration to split/merge shards on
aggregate throughput. A partition was added/removed to the
system every 20 seconds. When adding shards, the band origi-
nally had 2 shards, and when removing it started with 4 shards.

4.6 Shard Maintenance

When a replica is being unresponsive, the configuration
that contains that replica needs to be modified. In or-
der to restore service immediately, the new configuration
is simply the old configuration with the unresponsive
replica removed. The overhead is the same as that of any
update operation on the sequencer shard. Next, in order
to restore the original fault tolerance, a new replica needs
to be allocated. One would take into account placement
for optimal diversity, and load balancing considerations.
Then a second reconfiguration needs to take place to add
the new replica to the configuration.

Figure 12 shows the impact of adding/removing repli-
cas to a single shard through reconfiguration. The tem-
porary drop in throughput is due to the original configu-
ration being wedged. Because the choice of timeout val-
ues does not affect system safety, clients were using long
5 second timeouts to retry their requests. Requests to
the old configuration (before adding/removing replicas)
would timeout. When a client’s request times out, it tries
to refresh its configuration information by broadcasting
a request to all the replicas of the old shard configura-
tion. By our assumptions, at least one replica of the old

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Time (sec)

Removing Replicas
Adding Replicas

Figure 12: Impact of reconfiguration to add/remove replicas
to a shard. Replicas were added/removed every 20 seconds.

configuration would still be alive and would know of the
new configuration and responds to the client. Once the
client receives a response detailing the new shard con-
figuration, it retries its request.

4.7 Failure Tolerance

Replicas in each shard monitor the replicas in the shard
they are sequencing. When replica failure is suspected,
the wedge command is issued to the victim shard by
both the suspecting replicas in the same shard and the se-
quencer shard. This is done to prevent the shard from ac-
cepting any new client requests and guarantee that safety
is not violated. Next, the sequencer issues a reconfigura-
tion of the wedged shard and spins up new replicas if
needed. Figure 13 highlights the fact that because elas-
tic Replication guarantees safety independent of timeout
values, aggressively small timeout values can used for
failure detection without compromising strong consis-
tency.

5 Conclusion

Elastic replication is a new replication technique for
sharded datacenter services. It supports rapid reconfig-
uration without the use of a centralized configuration
manager. Elastic replication is novel in that replicated
shards are responsible for each others’ configurations.
Each shard uses only f + 1 replicas to tolerate up to f
crash failures at a time. Elastic replication guarantees
strong consistency in the presence of reconfiguration
and without relying on accurate failure detection. We
have specified our new protocol, analyzed its reliabil-
ity properties, and benchmarked a prototype implemen-
tation. We believe elastic replication is a simple mecha-
nism for providing strong consistency, high availability
and fast reconfiguration to today’s large scale services.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 30 35 40 45 50 55 60

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Time (sec)

50 msec
100 msec

2 sec lease
5 sec lease

Figure 13: Failure tolerance within a shard with various time-
outs. Failure was induced at the 40th second. Shorter timeouts
only result in shorter downtime without compromising safety.

Acknowledgments
We would like to thank Haoyan Geng, Ken Birman,
our shepherd Steve Gribble, and the anonymous review-
ers for their valuable feedback. This work was funded,
in part, by grants from DARPA, NSF, ARPAe, Ama-
zon.com and Microsoft Corporation. The last author was
partially supported by Grant-of-Excellence #120032011
from the Icelandic Research Fund.

Appendix A: Safety
We show that the Replicas specification refines the
high-level Shard specification. The collective states of
the replicas maps to the state of the shard as follows:
H = maxC∈C gcp(C). The following invariants are eas-
ily proven:

• For any replica r, gcp(r.conf) is a prefix of r.history;
• PENDING replicas have an empty history;
• If a configuration C contains a PENDING replica,

then gcp(C) is empty;
• Replicas cannot truncate their stable prefix;
• For any configuration that has an ACTIVE or IM-
MUTABLE replica, all the predecessor configura-
tions have at least one IMMUTABLE replica.

Unlike other replication protocols such as Primary-
Backup, Chain Replication, or State Machine Replica-
tion, it is not an invariant that, given two histories of two
different replicas in a configuration, one is a prefix of
the other. However, it is the case that the stable prefix of
any replica is always a prefix of the histories of the other
replicas.
An important invariant that holds over the states of repli-
cas is the following:

Stable Prefix Invariant: The stable prefix of a replica’s
history is a prefix of the history of each of its non-
PENDING peers.

Proof. Initially, all histories are empty, and so the invari-
ant holds in the initial state. We will now show that each
transition maintains the invariant.

1. addOp(r,o): This transition does not change the
stable prefix of any replica;

2. adoptHistory(r): This transition copies the
history and stable prefix from the orderer. The or-
derer’s stable prefix satisfies the invariant, and thus
the transition maintains the invariant;

3. learnPersistence(r,s): This transition, as a
precondition, requires that s corresponds to a prefix
of all histories of the peers, and thus evidently en-
forces the invariant for the state after the transition;

4. wedgeState(r): This transition does not change
the stable prefix of any replica;

5. inheritHistory(r,r′): This transition can only
happen to replicas that are in PENDING mode.
Let C = r.conf and C′ = r′.conf. Observe that the
learnPersistence transition can only happen
in a configuration that has no PENDING replicas,
as the history of a PENDING replica is empty. Thus
we know that the learnPersistence transi-
tion cannot have occurred at replicas of C. Also
note that the initial configuration has no PENDING
replicas, and thus C not the initial configuration.

All non-PENDING replicas must thus have ob-
tained their history from an immutable replica in
C′ (inheritHistory transition) or from the or-
derer of C (adoptHistory transition). As the
addOp transition does not affect the invariant, we
will for simplicity of exposition assume that no op-
erations have arrived at the orderer. Because the or-
derer must have obtained its history from an im-
mutable replica of C′ all histories at non-PENDING
replicas are from immutable replicas in C′. Since
the invariant holds in C′, and since the histories of
PENDING replicas are empty, the invariant must
also hold in C after this transition.

As none of the possible transitions result in a state that
violate the property, the property is invariant.

Lemma 1. For any configuration C and any non-
PENDING replica r in the successor configuration of C,
there exists an IMMUTABLE replica in C whose history
is a prefix of r.history.

Proof. If r is the orderer, then its history must have first
been inherited from an immutable replica in C, and then
possibly extended with new operations (using addOp
transitions). Because no transition can truncate the his-
tory of the orderer, the lemma holds. If r is not the or-
derer, then its history was either directly inherited from
an immutable replica in C, or it was adopted from the
orderer. In either case, the lemma holds.

Corollary 2. For any configuration C and any non-
PENDING replica r in the successor configuration of C,
gcp(C) is a prefix of r.history.

Corollary 3. For any two configurations C and C′, C
before C′ in C , and r a non-PENDING replica of C′,
gcp(C) is a prefix of r.history.

Lemma 4. For any two configurations C and C′, either
gcp(C) is a prefix of C′ or vice versa.

Proof. Note that if either C or C′ contains PENDING
replicas, then its gcp is empty and the lemma holds triv-
ially. If neither contains PENDING replicas, then the
lemma follows from the corollary above.
Recall the refinement mapping H = maxC∈C gcp(C).
Lemma 4 shows that the refinement mapping is well-
defined, in that there is a unique maximum gcp among
the configurations.

Theorem 5. Specification Replicas refines specifica-
tion Shard.

Proof. By induction on the number of transitions. For
the initial state, all replica’s histories are empty and thus
map to the empty shard history H . We now show that
each Replicas transition corresponds to a transition
in Shard or leaves the state of Shard unchanged (a
so-called stutter). A transition at a replica r in configu-
ration C may change gcp(C), but cannot cause an incon-
sistency in maxC∈C gcp(C) because of Lemma 4. Exam-
ining each transition:

1. addOp(r,o): If the transition extends
maxC∈C gcp(C) by adding o, then the transi-
tion corresponds to apply([o]). Otherwise it is a
stutter;

2. adoptHistory(r): Because r adopts the history
of another replica, it cannot cause gcp(r.conf) to be
truncated. If the transition causes a sequence S of
operations to become persistent, the transition cor-
responds to apply(S). Otherwise the transition is
a stutter;

3. learnPersistence(r,s): This transition does
not affect the refinement mapping, and thus is a
stutter transition;

4. wedgeState(r): This transition does not affect
any histories, and therefore is a stutter;

5. inheritHistory(r,r′): r starts out with an
empty history, and thus the transition cannot cause
gcp(C) to be truncated. If the transition causes a
sequence S of operations to become persistent, the
transition corresponds to apply(S). Otherwise the
transition is a stutter.

Appendix B: Liveness

We now analyze the probability of meeting the liveness
conditions in more detail. For the sake of analysis, we
first assume a failure model in which replicas are either
up or down, and that each replica is up with probability
1
2 ≤ p < 1 independently of other replicas in the system.

When we run our protocol on a band with a large num-
ber of nodes T , we must balance the number of shards
N and per shard size n = T/N. Treading the balance is
not easy: when shards are small, it is more likely that
all replicas of an individual shard fail (violating A1),
whereas when shards are few and large, there is greater
chance of each shard suffering a replica failure and be-
coming wedged (violating A2). Let us define these vi-
olations as bad events A1: all members of some shard
fail, and A2: every group suffers at least one node fail-
ure. In the parlance of Section 4.1, we wish to maximize
P(p,n,N) = 1−Pr[A1 or A2].

Theorem 6. There is a number c > 0 depending only
on p such that Pr[A1 or A2]→ 0 when n = c logT and
T → ∞.

Here, log(·) denotes the natural logarithm of a num-
ber. The result implies that to minimize the chance of
wedging or complete configuration failure, the shard
size be n = Θ(logT) and there should be N = Θ

(
T

logT

)
shards on each band.

Proof. By definition, Pr[A1] = (1− pn)N and Pr[A2] =
1− (1− (1− p)n)N . We observe that by varying n and
N, these probabilities undergo a phase transition be-
tween converging to 0 or 1 in the limit of large T . We
show that when n is Θ(logT), the two probabilities si-
multaneously converge to zero, and so Pr[A1 or A2] ≤
Pr[A1]+Pr[A2]→ 0 as T → ∞.

Let α = log 1
1−p and β = log 1

p . Choose c such
that 1

α
≤ c ≤ 1

β
. This is always possible because p ≥

max{ 1
2 ,1− p}. Assume n = c logT and thus N = T

c logT .
We obtain the following.

lim
T→∞

Pr[A2] = lim
T→∞

(
1− pc logT

) T
c logT

= lim
T→∞

(
1− 1

T cβ

) T cβ ·T 1−cβ

c logT

= lim
T→∞

e−
T 1−cβ

c logT = 0

since limk→∞

(
1− 1

k

)k
= 1

e and 1− cβ > 0.

Similarly,

lim
T→∞

Pr[A1] = 1− lim
T→∞

(
1− (1− p)c logT

) T
c logT

= 1− lim
T→∞

(
1− 1

T cα

) T cα ·T 1−cα

c logT

= 1− lim
T→∞

e−
T 1−cα

c logT = 0

since 1− cα < 0.
Whereas the proof shows the asymptotic behavior of

elastic bands, Eq. (1) provides an exact probability for
when elastic replication requires external intervention.
However, neither expression is convenient to use in prac-
tice. Below, we give a closed form estimate on the prob-
ability of impeding liveness of the protocol as we vary
the parameters p, n and N. The expression can guide op-
erators in configuring elastic replication that fit the shard
set-up and failure probability of their servers.

Using
(
1− 1

k

)k ≤ 1
e and

(
1− 1

k

)k−1 ≥ 1
e for k ≥ 2

from basic calculus, we can derive the following lower
bound on P(p,n,N) using the techniques from the pre-
vious proof.

Corollary 7. Let p ≥ 1
2 and set α = log 1

1−p and β =

log 1
p . If the number of shards follows N = c logT and

each shard has n = T
c logT replicas for some c such that

1
α
≤ c≤ 1

β
and large number of nodes T , then:

P(p,n,N)≥ e−
T

(T cα−1)c logT −e−
T 1−cβ

c logT = e−
n

(nN)cα−1 −e
− n

(nN)cβ .

References

[1] P. Alsberg and J. Day. A principle for resilient shar-
ing of distributed resources. In Proc. of the 2nd Int.
Conf. on Software Engineering (ICSE’76), pages
627–644, San Francisco, CA, Oct. 1976. IEEE.

[2] J. Armstrong. The development of Erlang. In Proc.
of the SIGPLAN Int. Conf. on Functional Program-
ming, pages 196–203. ACM Press, 1997.

[3] H. Attiya, A. Bar Noy, and D. Dolev. Shar-
ing memory robustly in message passing systems.
Journal of the ACM, 42(1):121–132, 1995.

[4] P. Bailis and A. Ghodsi. Eventual consistency to-
day: limitations, extensions, and beyond. CACM,
56(5):55–63, May 2013.

[5] J. Baker, C. Bond, J. Corbett, J. J. Furman,
A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
CIDR, pages 223–234. www.cidrdb.org, 2011.

[6] N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and
R. Grimm. PADS: A Policy Architecture for build-
ing Distributed Storage systems. In 6th USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI), Apr. 2009.

[7] K. Birman, D. Malkhi, and R. Van Renesse. Virtu-
ally Synchronous Methodology for Dynamic Ser-
vice Replication. Technical Report MSR-TR-
2010-151, Microsoft Research, 2010.

[8] K. P. Birman and T. A. Joseph. Exploiting virtual
synchrony in distributed systems. In Proc. of the
11th ACM Symp. on Operating Systems Principles,
Austin, TX, Nov. 1987. ACM Press.

[9] N. Budhiraja, K. Marzullo, F. Schneider, and
S. Toueg. The primary-backup approach. In
S. Mullender, editor, Distributed systems (2nd
Ed.). ACM Press/Addison-Wesley, New York, NY,
1993.

[10] M. Burrows. The Chubby Lock Service for
loosely-coupled distributed systems. In 7th Sympo-
sium on Operating System Design and Implemen-
tation, Seattle, WA, Nov. 2006.

[11] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, et al. Spanner: Google’s
globally-distributed database. In Proc. of the
10th Symposium on Operating Systems Design and
Implementation (OSDI’12), Hollywood, CA, Oct.
2012. USENIX.

[12] S. B. Davidson, H. Garcia-Molina, and D. Skeen.
Consistency in partitioned networks. ACM Com-
puting Surveys, 17(3):341–370, Sept. 1985.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kaku-
lapati, A. Lakshman, A. Pilchin, S. Sivasubrama-
nian, P. Vosshall, and W. Vogels. Dynamo: Ama-
zon’s highly available key-value store. In Proc. of
21st Symposium on Operating Systems Principles,
2007.

[14] M. Fischer, N. Lynch, and M. Patterson. Impossi-
bility of distributed consensus with one faulty pro-
cess. J. ACM, 32(2):374–382, Apr. 1985.

[15] S. Ghermawat, H. Gobioff, and S.-T. Leung. The
Google file system. In Proc. of the 19th ACM
Symp. on Operating Systems Principles, Bolton
Landing, NY, Oct. 2003.

[16] L. Glendenning, I. Beschastnikh, A. Krishna-
murthy, and T. Anderson. Scalable consistency in
scatter. In Symposium on Operating Systems Prin-
ciples (SOSP ’11), Cascais, Portugal, Oct. 2011.

[17] C. Gray and D. Cheriton. Leases: an efficient fault-
tolerant mechanism for distributed file cache con-
sistency. In Proc. of the Twelfth ACM Symp. on Op-
erating Systems Principles, pages 202–210, Litch-
field Park, AZ, Nov. 1989.

[18] M. Herlihy. A quorum consensus replication
method for abstract data types. Trans. on Computer
Systems, 4(1):32–53, Feb. 1986.

[19] M. Herlihy and J. Wing. Linearizability: A correct-
ness condition for concurrent objects. Trans. on
Programming Languages and Systems, 12(3):463–
492, July 1990.

[20] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-
scale systems. In Proceedings of the 2010 USENIX
conference on USENIX annual technical confer-
ence, volume 8, pages 11–11, 2010.

[21] R. Jimenéz-Peris and M. Patiño-Martı́nez. Are
quorums an alternative for data replication? ACM
Trans. Database Syst., 28(3):257–294, Sept. 2003.

[22] A. Lakshman and P. Malik. Cassandra: a decen-
tralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[23] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. CACM, 21(7):558–
565, July 1978.

[24] L. Lamport. The part-time parliament. Trans. on
Computer Systems, 16(2):133–169, 1998.

[25] L. Lamport, D. Malkhi, and L. Zhou. Brief an-
nouncement: Vertical Paxos and Primary-Backup
replication. In Proc. of the 28th ACM Symp. on
Principles of Distributed Computing, Aug. 2009.

[26] L. Lamport and M. Massa. Cheap Paxos. In
Proceedings of the 2004 International Conference
on Dependable Systems and Networks, DSN ’04,
Washington, DC, 2004. IEEE Computer Society.

[27] W. Lloyd, M. Freedman, M. Kaminsky, and D. An-
dersen. Don’t settle for eventual: Scalable causal

consistency for wide-area storage with COPS.
In Symposium on Operating Systems Principles
(SOSP ’11), Cascais, Portugal, Oct. 2011.

[28] A. Muthitacharoen, S. Gilbert, and R. Morris.
Etna: A fault-tolerant algorithm for atomic mutable
DHT data. Technical Report MIT-LCS-TR-993,
MIT Laboratory for Computer Science, June 2004.

[29] J.-F. Paris. Voting with witnesses: A consistency
scheme for replicated files. In Proc. of the 6th
Int. Conf. on Distributed Computer Systems. IEEE,
1986.

[30] C. Pu and A. Leff. Replica control in distributed
systems: An asynchronous approach. In Proc. of
the 1991 ACM SIGMOD Int Conf. on Management
of Data, pages 377–386, 1991.

[31] B. Reed and F. P. Junqueira. A simple totally or-
dered broadcast protocol. In proceedings of the 2nd
Workshop on Large-Scale Distributed Systems and
Middleware, page 2. ACM, 2008.

[32] R. Rodrigues and B. Liskov. Rosebud: A scal-
able Byzantine-fault-tolerant storage architecture.
Technical Report MIT-LCS-TR-992, MIT Labora-
tory for Computer Science, Dec. 2003.

[33] R. Rodrigues, B. Liskov, and L. Shrira. The design
of a robust peer-to-peer system. In Proc. of the 10th
ACM SIGOPS Eur. Workshop, Sept. 2002.

[34] S. Sankararaman, B.-G. Chun, C. Yatin, and
S. Shenker. Key consistency in DHTs. Technical
Report UCB/EECS-2005-21, UC Berkeley, 2005.

[35] R. Schlichting and F. Schneider. Fail-stop pro-
cessors: an approach to designing fault-tolerant
computing systems. Trans. on Computer Systems,
1(3):222–238, Aug. 1983.

[36] F. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299–319, Dec. 1990.

[37] T. Shafaat, M. Moser, A. Ghodsi, T. Schütt,
S. Haridi, and A. Reinefeld. On consistency of
data in structured overlay networks. In Proceed-
ings of the 3rd CoreGRID Integration Workshop,
Apr. 2008.

[38] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Mass Stor-
age Systems and Technologies (MSST), 2010 IEEE
26th Symposium on, pages 1–10. IEEE, 2010.

[39] R. Thomas. A solution to the concurrency control
problem for multiple copy databases. In Proc. of
COMPCON 78 Spring, pages 88–93, Washington,
D.C., Feb. 1978. IEEE Computer Society.

[40] R. van Renesse, C. Ho, and N. Schiper. Byzantine
chain replication. In OPODIS, Rome, Italy, De-
cember 2012.

[41] R. van Renesse and F. Schneider. Chain Replica-
tion for supporting high throughput and availabil-
ity. In 6th Symp. on Operating Systems Design and
Implementation (OSDI ’04), Dec. 2004.

[42] W. Vogels. Eventually consistent. ACM Queue,
6(6), Dec. 2008.

[43] H. Yu and A. Vahdat. The cost and limits of
availability for replicated services. In Proc. of the
18th ACM Symp. on Operating Systems Principles,
Banff, Canada, Oct. 2001.

