
Caches in the Modern Memory Hierarchy with
Persistent Memory and Flash

Latest copy: https://ymsir.com/fast19

Irfan Ahmad1 Ymir Vigfusson2∗

1 CachePhysics

2Emory University/Reykjavik University

Monday 25th February, 2019

∗Supported in part by NSF CAREER award #1553579.
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 1 / 87

Motivation

To cache is to scale
For a very long time, practical scaling of every level in the computing hierarchy has
required innovation and improvement in cache management. This is as true for CPUs as
it is for storage and networked, distributed systems. As such, research into cache
efficiency and efficacy improvements has been highly motivated and continues with
strong improvements to this day.

Recent developments:

Memory hierarchies keep getting more tiered and complex.

Hardware innovations are changing previous latency assumptions.

New cache modeling techniques could spark a rebirth of the field.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 2 / 87

An Non-computer Example of a Cache

Figure: A fixed sized table-top cache of often accessed books in a library. The
contents are this cache are selected by a replacement algorithms.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 3 / 87

What is a Cache?

A computer program accesses data from a bunch of “memory”
Not all memory is created equal
Faster memory is often more expensive and/or less dense
Desire: reduce the time waiting for accesses to slow memory
Ideal: store data likely to be needed in the future in faster memory

Definition

... hardware or software component that stores data so future requests for
that data can be served faster; the data stored in a cache might be the
result of an earlier computation, or the duplicate of data stored elsewhere.
—Wikipedia

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 4 / 87

Scale of Latencies (circa 2016)

∗

∗
https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 5 / 87

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Trade-offs

Inherent trade-off between size and speed
Between expensive technologies (such as SRAM, DRAM) vs cheaper
commodities (such as Flash or hard disks)
For same overall cost, can have many different configurations

I A little more higher-level cache for a lot less lower-level cache
I A lot more lower-level cache for a little less higher-level cache
I Often have more than two levels of caches, configuration problem is

non-trivial

∗

Figure: Ballpark comparison of an example fast, higher-level SRAM technology
versus denser, lower-level DRAM.

∗
http://www.cs.rochester.edu/users/faculty/sandhya/csc252/lectures/lecture-storage.pdf

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 6 / 87

How Essential?

A large amount of die area on
modern processors is dedicated
to caches

This example is an Intel Haswell
processor (via extremetech.com)

Not labeled here are the large
Level-2 (L2) caches

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 7 / 87

How Essential?

A large amount of die area on
modern processors is dedicated
to caches

This example is an Intel Haswell
processor (via extremetech.com)

Not labeled here are the large
Level-2 (L2) caches

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 7 / 87

Terminology

Cache are modeled like other memory, responding to an online sequence of
data requests called references

Hit
A cache hit occurs when the requested data can be found in the cache.

Miss
A cache miss occurs when requested data is not found in the cache.

Compulsory/Cold: first reference to an entry (address/block, key/value pair)

Capacity: cache not big enough to hold every entry

Conflict: multiple entries mapped to same already full cache location

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 8 / 87

Terminology

Cache performance ultimately boils down to the latency of memory accesses.
The effective access time equals the average:

EAT = hit-ratio× cache-access-time + miss-ratio× slow-memory-access-time

Often dominated by the second term, so objective becomes to minimize the
miss ratio.

Rates and Ratios
Both cache miss rates and miss ratios are used in literature, depending upon
context. Rates are often measured in relative time, e.g. misses per 1000
instructions (MPKI). There doesn’t appear to be a standard convention between
using miss ratios (lower is better) versus hit ratios (higher is better).

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 9 / 87

Cache is Full, now what?

On cache miss, a new entry needs to go into the cache. If cache is
full, some other entry has to leave.

Cache replacement

The policy that selects which entry is thrown out (replaced) is referred to
as a cache replacement policy, page replacement policy or eviction policy
depending upon context.

Workload performance is often very sensitive to the eviction policy.
Eviction policies have traditionally been used in two related contexts:
buffer caches and virtual memory.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 10 / 87

Unified Buffer Caches

In operating system (OS) buffer caches, file or block reads and writes
are explicit and OS-visible making total ordering feasible.
In the case of virtual memory managed via page tables, reads and
writes are not directy OS visible. However, “access” or “use” bits
maintained by hardware can be sampled to get approximate ordering.
More recently, OSes have started to use unified buffer caches that
unify the eviction schemes across both.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 11 / 87

Eviction Policies

Examples of eviction policies and approximate versions suitable for
implementation in virtual memory systems.

Original Approximation Notes

FIFO FIFO First-in First-out
LRU CLOCK Least recently used entry gets evicted
LIRS Clock-Pro Evict longest reuse distances
ARC CAR Adaptively emphasize recency versus

frequency
We’ll spend a few slides highlighting the ideas behind these and then turn

our focus back on LRU.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 12 / 87

LRU

Least-recently used (LRU)

Evict the entry that was last accessed furthest back in the past. This
is the most popular cache replacement policy.
Exploits the high locality of reference that is often found in workloads.
Think about the simplest way you’d implement LRU (a common
interview question).

Data structures: index + linked list.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 13 / 87

LRU

Least-recently used (LRU)

Evict the entry that was last accessed furthest back in the past. This
is the most popular cache replacement policy.
Exploits the high locality of reference that is often found in workloads.
Think about the simplest way you’d implement LRU (a common
interview question).
Data structures: index + linked list.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 13 / 87

LRU Variants (1)

What if maintaining a linked list is too expensive?
Second-chance/CLOCK

I Maintain 1 reference bit/item denoting recency.
I Bit set on access, removed in FIFO order, item evicted if bit=0
I Used in low-level caches; IBM WebSphere eXtremeScale

What if maintaining an index is too expensive?

LRU-k : Sample k items; delete the LRU of these (default in Redis.
Used by Twitter)

Why place at front of linked list?
Segmented LRU (SLRU): advance new item up by one segment

I S4LRU 8% better than LRU for Facebook photo caching, reduced
backend load by 23% (Huang et al. SOSP 2013)

Can more generally think of most algorithms as priority queues.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 14 / 87

LRU Variants (2)

What if cost of eviction varies?
Think of, e.g., database query caches.

Greedy-Dual and variants
I Assume eviction cost can be known or estimated
I Maintain a priority queue of Cost(x)/Size(x).

Trick for cost estimation (Vigfusson)
I Client tracks time between a miss and insert into cache.
I Provide information to cache along with request

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 15 / 87

LRU Variants (3)

What if items have different sizes?
Greedy-Dual-Size-Frequency (GDSF), popular in web caches

I Maintain a priority queue of

Pri(x) = clock + Freq(x) · Cost(x)

Size(x)

I Freq(x) starts at 1, incremented on each hit.
I On a miss, evict lowest priority items until enough size available
I Here, clock is the highest priority of evicted files

Ended up being most competitive strategy for Facebook photo
caching.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 16 / 87

LRU Variants (4)

What if items have different sizes?
Least Hit Density (2018) ∗, more rigorous

I Define Hx as age when item x hit, and L as age when x hit or evicted.
I Maintain a priority queue of

Pri(x) =
Hit-Prob(x)

Lifetime(x)× Size(x)
=

∑∞
i=now P[H = i]

Size(x)
∑∞

i=now P[L = age(x) + i]

I Track probabilities over classes of objects, grouped by frequency of
references

I Sample and evict lowest Pri(x) value (like LRU-k) to reduce overhead.

∗Beckmann et al. NSDI 2018
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 17 / 87

LRU Variants (5)

But recency metadata is lost when items are evicted!
Ghost lists (non-resident items) extend your history

I Maintain longer LRU queues but with a fixed number of value-less
items, ala S2LRU

I Access to these items is still a miss, but we learn the stack distance!
I Keys should be significantly smaller than values to be worthwhile

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 18 / 87

LRU Variants (6)

What about pollution from scans?
ARC (Mohda et al. IBM), Adaptive Replacement Cache

I Maintains two LRUs of variable size, one for items seen exactly once,
other for >1 hits

I Uses ghost lists to extend history of both LRUs
I Dynamically sizes the LRUs depending on scan prominence
I Historic concerns about patents

LIRS (Jiang and Zhang), Low Inter-Reference Recency Set
I Two LRU queues of fixed sizes with low reuse distance (LIR) and high

reuse distance (HIR)
I Uses ghost lists for high reuse distance items
I HIR item i switched to LIR if reuse distance of i smaller than largest

within LRU

CLOCK-variants of both: Clock-Pro (LIRS), CAR (ARC)

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 19 / 87

Birth of Virtual Memory

Replacement algorithms became interesting
first in context of virtual memory

Atlas: first known system with virtual
memory (paper: 1962).

I Must read paper: Kilburn, T. et al.
One-level storage system. IRE
Transactions EC-11 (Apr. 1962).

I Invented a “learning” algorithm to
determine which pages should sit on
drums versus in core. Had “use” bits.

I Corner cases reportedly led to
catastrophic thrashing. Figure: Atlas console

Picture source:
http://www.computerconservationsociety.org/

resurrection/res69.htm

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 20 / 87

Let’s be Experimental?

People wanted programming benefits of virtual memory but ...
I Well known in the 1960s: virtual memory eviction algorithm

performance is workload-dependent and non-linear.
I Major efforts to understand thrashing behavior and to model cache

performance goes back to 1960s.

In the mid 1960s, the largest project of its kind to date was launched at IBM
to study eviction algorithms because virtual memory systems were suffering
from unexplained thrashing in the field.
IBM, being more conservative, hadn’t wanted to ship virtual memory based
systems until thrashing was better understood or mitigated.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 21 / 87

Let’s be Experimental?

Famous works of Belady et al. followed∗.
I Introduced Belady’s MIN or (OPT) algorithm.
F Evict the element used farthest in the future.
F Intuitive, but proof subtle: show that the greedy (prescient) strategy stays

ahead of the true OPT.

I Studied relationship between block size and miss ratios.
I Explored motivation of using access history in replacement decisions.
I Described motivation for LRU.

∗L. A. Belady, “A Study of Replacement Algorithms for a Virtual-storage Computer,”
IBM Syst. J., vol. 5, no. 2, pp. 78–101, Jun. 1966.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 22 / 87

Belady’s Motivation for LRU–1966

Figure: Excerpt from Belady’s 1966 seminal paper.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 23 / 87

Exactly who invented this stuff?

Peter J. Denning on the Origin of Various Replacement Algorithms

“I am certain there is no one person who originated LRU. It was an
idea that was “in the air” at the time, as many OS designers and
architects were considering virtual memory and other kinds of cache. The
first I remember it in a published paper was Belady’s 1966 study of paging
algorithms. But before that paper was out, as a newbie grad student at
MIT, I was pursuing a suggestion of my advisor to become an expert on
virtual memory and help them design the Multics virtual memory. The
1961 paper on Atlas was the starting point and brought the issue of
replacement algorithm to the fore. Others began inquiring into paging
algorithms and when I began my investigation in 1965 I found MIT
professors talking about FIFO, RAND, LRU, and others. These
seemed to be the obvious ones occurring to people.”∗

∗
Private communication of Irfan Ahmad with Peter J. Denning, Jan. 2018

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 24 / 87

Let’s be Analytical?

Throughout the 1960s, cache modeling was done by experiments with
different sizes and parameters. This was very time consuming.
In 1970, Mattson, et al. provided a one-pass (online) algorithm to
model cache behavior for a certain class of algorithms known as stack
algorithms that exhibit the subset inclusion property.

Subset inclusion property

The subset inclusion property is satisfied iff the specific set of pages in a
cache Ck of size k is always a subset of the pages in a cache Ck+1 of size
k + 1 on the same trace.

The property implies a unique eviction order of cache elements,
forming a stack.

I E.g. Ck would evict the unique element {Ck − Ck−1}.
Breakthrough in modeling cache behavior.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 25 / 87

Stack distance

Examples of stack algorithms include LRU, LFU and OPT. But many
high-performance algorithms are non-stack: ARC, LIRS, etc.

Reuse distance

The reuse distance of an item x is the number of unique references since
that item was last requested (or +∞ if never, a cold miss)

What are the reuse distances for the references a b a c c a?

∞ ∞ 1 ∞ 0 1

Proof.

Exact characterization of LRU. For LRU, stack distance exactly equals
reuse distance.

Performance of LRU at any size k can be characterized by tracking reuse
distances.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 26 / 87

Stack distance

Examples of stack algorithms include LRU, LFU and OPT. But many
high-performance algorithms are non-stack: ARC, LIRS, etc.

Reuse distance

The reuse distance of an item x is the number of unique references since
that item was last requested (or +∞ if never, a cold miss)

What are the reuse distances for the references a b a c c a?
∞ ∞ 1 ∞ 0 1

Proof.

Exact characterization of LRU. For LRU, stack distance exactly equals
reuse distance.

Performance of LRU at any size k can be characterized by tracking reuse
distances.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 26 / 87

Calculating LRU stack distance

Extensive literature on this problem.

Prominent problem in programming languages and compiler
communities.
Compilers need to decide which variables are afforded registers,
whether it pays to allocate a stack frame, etc.∗

Unlike us, the compiler can take multiple passes over the data.

Modeling non-stack algorithms?

No one-pass algorithm has been discovered for precisely modeling a
deterministic non-stack eviction scheme.

Theorem

Conjecture: no such general-purpose, exact algorithm exists for the class
of deterministic non-stack eviction algorithms.

∗Ding et al. PLDI 2003
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 27 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Caches Critical, Yet Management Problems Loom

Distributed Platform

DBs
KV Stores

Containers
Apps

Servers
CPUs

L1/L2/LLC
DRAM

3D Xpoint
Flash

Network
Storage

…

Network Elastic Cache

Cache	Performance	
Hit	Ratio	
Cache	Size	

65%	
128GB	

Figure: Caches are critical to the
performance of everything from watches to
datacenters and global distributed systems.

Is this performance good? Can it
be improved?

How much Cache for App A vs. B
vs. ...?

What happens if I add / remove
DRAM?

How much DRAM versus Flash?

How to achieve 99%ile latency of
X µs?

What if I add / remove
workloads?

What if I change parameters?

Is there cache thrashing /
pollution?

How long to warm up the cache?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 28 / 87

Cache modeling

Core strategy for realizing these applications

Cache Utility Curves

Model how performance varies as a function of provided resources (cache
space). The performance of stack algorithms can modeled by tracking
stack distances.

We first define the “miss rate curve” (MRC), the most common cache
utility curve, more precisely.
Next up:

How should we generate MRCs, algorithmically?
What are the appealing properties?
What happens on modern workloads?
What about non-stack algorithms?

We then move on to applications.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 29 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X

references . . . C B A D

A B C

distance . . . 4 ∞ 3 7

1 2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X

references . . . C B A D A

B C

distance . . . 4 ∞ 3 7

1 2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X

X

X X

references . . . C B A D A

B C

distance . . . 4 ∞ 3 7

1 2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X

references . . . C B A D A

B C

distance . . . 4 ∞ 3 7 1

2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X

references . . . C B A D A B

C

distance . . . 4 ∞ 3 7 1

2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X

X

X

references . . . C B A D A B

C

distance . . . 4 ∞ 3 7 1

2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X

X X

X

references . . . C B A D A B

C

distance . . . 4 ∞ 3 7 1

2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X

X X X

X

references . . . C B A D A B

C

distance . . . 4 ∞ 3 7 1

2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X

references . . . C B A D A B

C

distance . . . 4 ∞ 3 7 1 2

3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X

references . . . C B A D A B C
distance . . . 4 ∞ 3 7 1 2

3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X

X
references . . . C B A D A B C
distance . . . 4 ∞ 3 7 1 2

3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X

X X
references . . . C B A D A B C
distance . . . 4 ∞ 3 7 1 2

3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X

X X X
references . . . C B A D A B C
distance . . . 4 ∞ 3 7 1 2

3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X

X X X X
references . . . C B A D A B C
distance . . . 4 ∞ 3 7 1 2

3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X
references . . . C B A D A B C
distance . . . 4 ∞ 3 7 1 2

3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm Example

X X X X X

references . . . C B A D A B C
distance . . . 4 ∞ 3 7 1 2 3

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 30 / 87

Mattson’s Stack Distance Algorithm

M ← |unique references|, N ← |all references|
If you track references on a list

I Calculate unique refs since last access
I Distance from top of priority-function-ordered stack (e.g. LRU)
I Hit if distance < cache size, else miss
I Cost: O(M) space, O(NM) compute

If you store and retrieve stack distances using a tree.
I Reduces cost to O(N) space, O(N logN) compute∗.

If your tree stores unique references
I Reduces cost to O(M) space, O(N logM) compute†.

O(N logM) still too expensive to run online, real-time

∗B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM Journal for Research and
Development, July 1975.
†F. Olken. Efficient methods for calculating the success function of fixed space replacement

policies. Perform. Eval. 3, 2 (1983)
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 31 / 87

Modeling with Miss Ratio Curves (MRCs)

Learn the performance model of
applications and cache.

Predict the performance of
workload as f (cache size, params)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20
cache size(GB)

m
is

s
ra

tio

Example Miss Ratio Curve

Figure: Example MRC∗.

∗
Waldspurger et al, Efficient MRC Construction with SHARDS, USENIX FAST ’15

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 32 / 87

Understanding Cache Models

Models help decide useful
increments of change.

In this example, no significant
benefit despite an 8× increase in
budget.

Many real-life workloads naturally
have MRCs with staircase patterns.
Why?

I Working sets of different sizes.
I Might also represent different

time scales.
I e.g. a diurnal vs weekly vs

monthly working set sizes.

Lo
w

er
 is

 b
et

te
r

42 84 128 170 0

Cache Size (GB)
M

is
s

R
at

io
 x2 x4 x8

Figure: A real workload MRC illustrating
capacity allocations that yield negligible benefits
despite 3 orders of magnitude increase in cost.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 33 / 87

Understanding Cache Models

Models help decide useful
increments of change.

In this example, no significant
benefit despite an 8× increase in
budget.

Many real-life workloads naturally
have MRCs with staircase patterns.
Why?

I Working sets of different sizes.
I Might also represent different

time scales.
I e.g. a diurnal vs weekly vs

monthly working set sizes.

Lo
w

er
 is

 b
et

te
r

42 84 128 170 0

Cache Size (GB)
M

is
s

R
at

io
 x2 x4 x8

Figure: A real workload MRC illustrating
capacity allocations that yield negligible benefits
despite 3 orders of magnitude increase in cost.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 33 / 87

Understanding Cache Models (2)

Often, most operating points are
highly inefficient.

Look for cliff bottoms to improve
efficiency.

This cache is operating at the
lowest ROI point; equivalent
performance to 1/8 the budget.

Arrows represent the efficient
operating points which can be
enumerated programmatically.

42 84 128 170 0

Cache Size (GB)
Lo

w
er

 is
 b

et
te

r
M

is
s

R
at

io

Figure: An MRC annotated with the efficient
operating points for this workload’s LRU cache.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 34 / 87

MRCs from 1966 (Belady)

Belady used MRCs to
compare the impact of
different memory cache
block sizes (note the
log scale).

I Block size made a
huge difference.

I We see same for
modern storage
workloads.

I Alas, few caches
systematically
exploit this.

Cache block size is just
one of many
parameters.

Figure: Miss Rate Curves of Different Block Sizes
from Belady 1966

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 35 / 87

Modern-Day Storage Workload Block Size MRCs

Single workload;
LRU with different
block sizes.

Example of how
MRCs can help
predict
performance under
different policies.

A self-adapting
data infrastructure
could measure and
dynamically adjust
to workload. Figure: A real storage workload with LRU MRCs for

different cache block sizes.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 36 / 87

Modern-Day Storage Workload MRCs (LRU)

msr_mds (1.10%) msr_proj (0.06%) msr_src1 (0.06%) t00 (0.38%) t01 (0.05%) t02 (0.28%) t03 (0.65%)

t04 (0.28%) t05 (1.00%) t06 (0.33%) t07 (0.98%) t08 (0.04%) t09 (0.21%) t10 (0.61%)

t11 (0.65%) t12 (0.43%) t13 (0.46%) t14 (0.38%) t15 (0.10%) t16 (1.20%) t17 (0.54%)

t18 (0.08%) t19 (0.06%) t20 (0.03%) t21 (0.09%) t22 (0.04%) t23 (0.07%) t24 (0.65%)

t25 (1.20%) t26 (0.33%) t27 (0.50%) t28 (0.57%) t29 (0.12%) t30 (0.06%) t31 (0.95%)

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0 40 80 0 500 1000 0 200 0 20 40 0 200 400 0 60 120 0 20

0 30 60 0 9 18 0 50 100 0 20 40 0 300 600 0 60 120 0 20 40

0 20 40 0 20 40 600 30 60 0 100 200 300 0 200 400 0 20 40 0 40 80

0 100 200 0 200 400 0 300 600 0 200 400 0 300 600 0 200 400 0 20 40

0 5 10 0 30 60 0 20 40 0 20 40 0 300 600 0 100 200 300 0 7 14
Cache Size (GB)

M
is

s
R

at
io

Exact (unsampled) SHARDSadj (smax=8K) SHARDS (smax=8K)

Figure: Real storage workload MRCs for LRU∗.

∗
Waldspurger et al, Efficient MRC Construction with SHARDS, USENIX FAST ’15

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 37 / 87

Modern-Day Storage Workload MRCs (ARC, LIRS, OPT)

t25 t26 t27 t28 t29 t30 t31

t18 t19 t20 t21 t22 t23 t24

t11 t12 t13 t14 t15 t16 t17

t04 t05 t06 t07 t08 t09 t10

msr_mds msr_proj msr_src1 t00 t01 t02 t03

0 5 10 0 30 60 0 20 400 20 40 0 300 600 0 100 200 300 0 7 14

0 100 200 0 200 400 0 300 600 0 200 400 0 300 600 0 200 400 0 20 40

0 20 40 0 20 40 600 30 60 0 100 200 300 0 200 400 0 20 40 0 40 80

0 30 60 0 9 18 0 50 100 0 20 40 0 300 600 0 60 120 0 20 40

0 40 80 0 500 1000 0 100 200 300 0 20 40 0 200 400 0 60 120 0 20
0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Cache Size (GB)

M
is

s
R

at
io

ARC LIRS OPT Sampled (R=0.001) Exact (unsampled)

Figure: Real storage workload MRCs for different eviction algorithms∗.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 38 / 87

Closer Look at ARC and LIRS Examples

(a) msr_src1 (b) msr_web

0 100 200 300 0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cache Size (GB)

M
is

s
R

at
io

Sampling Rate (R)

0.001

0.01

Exact MRC

Cache Algorithm

LIRS

ARC

OPT

Figure: Real storage workload MRCs for different eviction algorithms∗.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 39 / 87

Cache Performance Observations

Cache performance highly variable in several parameters, for example:
I Cache size, cache block size
I Cache eviction and prefetch policies
I Write-through versus write-back

Benefit varies widely by workload.
Opportunity: dynamic cache management

I Efficient sizing, allocation, and scheduling
I Improve performance, isolation, QoS

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 40 / 87

Cache Modeling Research

1970	 1975	 1980	 1985	 1990	 1995	 2000	 2005	 2010	 2015	1965	

separate simulation
per cache size

Bennett & Kruskal
balanced tree

O(N), O(N log N)

Olken
tree of unique refs

O(M), O(N log M)

SHARDS
spatial hashing
(stack algorithms)

Counter Stacks
probabilistic counters

O(1), O(N)

O(log M), O(N log M)

AET
kinetic modeling
(LRU-only)

O(1), O(N)

PARDA
parallelism

UMON-DSS
hw set sampling

RapidMRC
on-off periods

Kessler, Hill & Wood
set, time sampling

Bryan & Conte
cluster sampling

Mattson Stack Algorithm
single pass

O(M), O(NM)

Space, Time Complexity
N = total refs, M = unique refs

Mini-Sim
miniature simulation
(all non-stack)

O(1), O(N)

2017	

Figure: Historical time line for cache modeling literature∗.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 41 / 87

MRC Construction Methods

Exact Approximate

Stack Algorithms Mattson algorithm all
sizes at once

MIMIR [SOCC ’14], Counter
Stacks [OSDI ’14], SHARDS
[FAST ’15], AET [ATC ’16], Vic-
tim Footprint [TACO ’17]

Any Algorithm separate simulation
for each size Miniature Simulation [ATC ’17]

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 42 / 87

The appealing properties of MRCs
Property 1: Scaled down reference stream is self-similar

Here, assume non-normalized miss rate curves.
Assume spatial sampling, for instance sample based on hash(key)

Temporal sampling generally performs worse.

Theorem (Sampling Theorem (LRU))

(Vigfusson) Let mα(s) denote the MRC on a reference stream where each
item is spatially sampled with probability α. The original MRC is
m1(s) = m(s). Then

E[mα(s)] ≈ αm
(s
α

)
.

The fit depends exponentially on how “cliffy” the MRC is at point s.

Sampling theorem argued generally by Kessler et al. (IEEE ToC
1994).

Takeaway: Spatial sampling scales the MRC down, both in terms of hit
rate and cache size.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 43 / 87

If Too Hard to Simulate, Mini-Simulate∗

Use the sampling theorem to simulate large cache using a tiny one
Scale down reference stream, cache size

I Random sampling based on hash(key)
I Assumes statistical self-similarity (broad argument by Kessler et al.

IEEE ToC 1994)

Run unmodified algorithm
I LRU, LIRS, ARC, 2Q, FIFO, OPT, . . .
I Track usual stats

Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 44 / 87

If Too Hard to Simulate, Mini-Simulate∗

refs cache

hash keys (colors)

≈
2×

half key space

half size

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 45 / 87

If Too Hard to Simulate, Mini-Simulate∗

refs cache

≈
8×

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 45 / 87

If Too Hard to Simulate, Mini-Simulate∗

refs cache

≈
32
×

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 45 / 87

If Too Hard to Simulate, Mini-Simulate∗

refs cache

≈
128
×

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 45 / 87

Flexible Scaling with Mini-Sim

Sm
mini
size

sampling
rate R

Se
emulated
size

Sm = R × Se
Figure: Flexible time-space tradeoff in
Mini-Sim configuration.

Time/space tradeoff
I Fixed sampling rate R
I Fixed mini size Sm

Example: Se = 1M
I R = 0.005⇒ Sm = 5000
I Sm = 1000⇒ R = 0.001

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 46 / 87

Using Mini-Sim to Adapt Online: Select Best Parameters

Sometime, algorithm parameters tuning can lead to significant
performance improvements
e.g. LIRS has S stack size factor, f . Here we show mini-sims with
f = 1.1− 3.

Mini Simulation
Results

0.4

0.6

1.1 2.0 3.0

M
is
s
Ra

tio
(E
W
M
A)

Parameter Settings
(f-values for LIRS)

Calculated
Miss
Ratios

Full Cache of Size N

Mini Cache Simulations

Pick lowest miss ratio at the end of
each epoch and adjust the full cache.

Sample: ignore unless
hash(key) mod M < T

Incoming I/O
Requests

...

...

...

...

<< N

+

+
+
+

Figure: Overview of Mini-Sim∗

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 47 / 87

Using Mini-Sim to Adapt Online: Select Best Parameters

Sometime, algorithm parameters tuning can lead to significant
performance improvements
e.g. LIRS has S stack size factor, f . Here we show mini-sims with
f = 1.1− 3.

Mini Simulation
Results

0.4

0.6

1.1 2.0 3.0

M
is
s
Ra

tio
(E
W
M
A)

Parameter Settings
(f-values for LIRS)

Calculated
Miss
Ratios

Full Cache of Size N

Mini Cache Simulations

Pick lowest miss ratio at the end of
each epoch and adjust the full cache.

Sample: ignore unless
hash(key) mod M < T

Incoming I/O
Requests

...

...

...

...

<< N

+

+
+
+

Figure: Overview of Mini-Sim∗

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 47 / 87

Mini-Sim Accuracy

●●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●
●
●

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ARC LIRS OPT
Cache Algorithms

M
ea

n
A

bs
ol

ut
e

E
rr

or

Sampling Rate (R)

0.001

0.01

Figure: Mini-Sim Error Analysis. Distribution
of mean absolute error for all 137 traces with
three algorithms (ARC, LIRS, OPT) at two
different sampling rates.

137 real-world traces
I Storage block traces
I CloudPhysics, MSR, FIU
I 100 cache sizes per trace

Mean Absolute Error
I ‖exact− approx‖1

I Average over all sizes

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 48 / 87

Problem: MRCs not always convex

Many applications of MRCs depend on convexity, but they aren’t always.

Figure: Convex hull of an MRC∗

Convex MRCs make optimal
partition sizing trivial (no need for
expensive search algorithms, greedy
algorithms are optimal).

If we can convert concave MRCs
into convex ones, can sometime
improve performance dramatically
(this MRC is a good example).

∗
Beckmann et al, HPCA ’15

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 49 / 87

Problem: MRCs not always convex

Many applications of MRCs depend on convexity, but they aren’t always.

Talus [HPCA’15]

Make them convex!

Intuition: Suppose you have 100GB, but the MRC is in a valley
relative to 50GB and 150GB.
Could just run at 50GB. But that gives more misses ... and is
wasteful.
What if we sent half the requests randomly to a cache of size 50GB?
Sampling theorem says it should behave like the 100GB cache (just
with half of the requests).
What if we sampled more, or less? What if we changed the size from
50GB?
What if we had two caches?

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 50 / 87

Problem: MRCs not always convex
Many applications of MRCs depend on convexity, but they aren’t always.

Talus [HPCA’15]

Make them convex!

Suppose MRC m of original policy is known. We want our miss rate
m′ to be convex.
Partition cache into two parts α and β.
Sample ρ fraction of requests to α by hashing the key.

I Sampling Theorem applies to each! mρ(s) = ρm
(

s
ρ

)
For a given s, we can pick two caches sizes r , t with r < s < t on the
convex hull of m.
Sampling ρ = t−s

t−r -fraction to α gives

mρ(s) = ρm(r) +
s − r

t − r
m(t)

This is a linear interpolation between m(r) and m(t) and thus would
make m′ convex even if m wasn’t in the [r , t] range.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 51 / 87

Convexification of MRCs via Talus∗

Figure: Convex hull of an MRC∗.

Assume original MRC (red)
available.

Emulate the cache on the convex
hull via hashing (spatial sampling).

Steer different fractions of
references to α and β.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

Beckmann et al, HPCA ’15

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 52 / 87

Convexification of MRCs via Talus∗

𝛼

𝛽

Figure: Convex hull of an MRC∗.

Assume original MRC (red)
available.

Emulate the cache on the convex
hull via hashing (spatial sampling).

Steer different fractions of
references to α and β.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

Beckmann et al, HPCA ’15

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 52 / 87

Can we make Non-LRU curves convex?

Need efficient online MRCs

Support dynamic changes?

I Workload and MRC
evolve over time

I Resize partitions, lazy
vs. eager?

I Migrate cache entries
in “wrong” partition?
Not clear how to
merge/migrate state

SLIDE: Transparent Cliff Removal

Sharded List with Internal Differential
Eviction

I Single unified cache, no hard partitions
I Defer partitioning decisions until

eviction
I Avoids resizing, migration, complexity

issues

New SLIDE list abstraction
I No changes to ARC, LIRS, 2Q, LRU

code
I Replaces internal LRU/FIFO building

blocks

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 53 / 87

Implementing Convexification using SLIDE lists

Figure: Overview of SLIDE lists∗.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 54 / 87

Implementing Convexification using SLIDE lists

211 88 141 156

tail

prev

block
hash

next

110 92

head

Figure: Overview of SLIDE lists∗.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 54 / 87

Implementing Convexification using SLIDE lists

211 88 141 156

tail

prev

block
hash

next

110 92

head

tail
β

tail
α

if T
α
= 200:

if T
α
= 100:

tail
β
tail

α

Figure: Overview of SLIDE lists∗.

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 54 / 87

SLIDE Cliff Removal for ARC and LIRS

SLIDE is a variant of Talus.

LIRS - msr_src1 ARC - msr_web

0 100 200 300 0 30 60

0.2

0.4

0.6

0.8

Cache Size (GB)

M
is

s
R

at
io

Original SLIDE Convex Hull

Figure: Bridging the gap from convex hull using SLIDE∗

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 55 / 87

SLIDE Cliff Removal Results

 0.41% / 0.57%

 2.04% / 4.07%

 3.85% / 9.78%

 4.65% / 9.61%

 0.05% / 0.69%

 0.16% / 2.59%

 1.26% / 5.50%

 1.86% / 5.21%

−0.06% / 0.36%

 3.14% / 4.55%

 0.08% / 2.83%

 0.05% / 2.37%

 0.04% / 0.28%

 1.00% / 4.05%

 0.82% / 5.93%

 2.61% / 6.83%

LRU [msr_web] 2Q [msr_web] LIRS [msr_web] ARC [msr_web]

LRU [msr_src2] 2Q [msr_src2] LIRS [msr_src2] ARC [msr_src2]

LRU [msr_src1] 2Q [msr_src1] LIRS [msr_src1] ARC [msr_src1]

LRU [msr_proj] 2Q [msr_proj] LIRS [msr_proj] ARC [msr_proj]

0 30 60 0 30 60 0 30 60 0 30 60

0 20 40 0 20 40 0 20 40 0 20 40

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

0 500 1000 0 500 1000 0 500 1000 0 500 1000

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

0.4

0.6

0.2

0.4

0.6

0.4

0.6

0.2

0.4

0.6

0.8

Cache Size (GB)

M
is

s
R

at
io

Original SLIDE

Figure: Bridging the gap from convex hull using SLIDE∗

∗
Waldspurger et al, Cache Modeling and Optimization using Miniature Simulations, USENIX ATC ’17

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 56 / 87

Sharing caches

Cache space often shared between multiple cache tenants.

CPU world: Multiple cores concurrently accessing data in cache
... or part of cache could be shut off to save energy
O/S: Multiple VMs or processes contending for main memory
Cloud: Shared memcache instances of customers (e.g. Memcachier)

Would be great to have system-wide management of caches.
But competition between cache tenants, often with different workloads,
can have adverse effects due to the lack of isolation.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 57 / 87

Sharing caches

Cache space often shared between multiple cache tenants.

CPU world: Multiple cores concurrently accessing data in cache
... or part of cache could be shut off to save energy
O/S: Multiple VMs or processes contending for main memory
Cloud: Shared memcache instances of customers (e.g. Memcachier)

Would be great to have system-wide management of caches.
But competition between cache tenants, often with different workloads,
can have adverse effects due to the lack of isolation.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 57 / 87

Cache partitioning

Common approach is to partition the cache space between tenants.
Without partitioning, some workloads cause cache to be vulnerable to
pollution

I one tenant might rapidly scan over data and cause all other contents to
be evicted

I one tenant might have a relatively slow request stream, and never see
cache benefit

Cache could run different replacement policies for different users
... or a single policy, with tenant ownership information used to
improve over regular replacement decisions

Tension between minimizing overall miss rate and being “fair” to each
tenant.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 58 / 87

Cache partitioning

Common approach is to partition the cache space between tenants.
Without partitioning, some workloads cause cache to be vulnerable to
pollution

I one tenant might rapidly scan over data and cause all other contents to
be evicted

I one tenant might have a relatively slow request stream, and never see
cache benefit

Cache could run different replacement policies for different users
... or a single policy, with tenant ownership information used to
improve over regular replacement decisions

Tension between minimizing overall miss rate and being “fair” to each
tenant.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 58 / 87

Cache partitioning

Wait, what do you mean by fairness?
Common notions:

Each tenant given reserved cache space (and thus some performance
isolation)
Reward the tenants who most benefit from cache space in terms of
miss rate
QoS / SLAs, such minimum target hit rate

Each can be translated into to a minimum cache size constraint for
each tenant.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 59 / 87

Cache partitioning formalized

General cache partitioning problem

Let N denote cache size. Let ci denote cache blocks allocated to tenant
i ∈ I and ai minimum cache size for tenant i ∈ I .
Let mi (x) denote miss rate of tenant i ∈ I for cache size x during the
period.

minimize
∑
i∈I

mi (ci)

s.t.
∑
i∈I

ci = N

ci ≥ ai i ∈ I

Problem is NP-complete for general functions (reduction to Knapsack or
Partition).

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 60 / 87

Solving cache partitioning (1)

How do we compute this (ci)i∈I partition?

Property 2: Monotonicity

The MRCs of all stack algorithms are monotone (non-increasing).

More space – fewer misses.
Empirically true for many but not all other policies (think RANDOM for
counterexample)

Property 3: Convexity

MRCs of many algorithms are convex (or can be made convex with Talus).
Specifically,

m(tx + (1− t)x) ≤ tm(x) + (1− t)m(x) for all t ∈ [0, 1]

.

(Note that we’re considering a natural extension of m(x) to the reals.)

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 61 / 87

Solving cache partitioning (1)

How do we compute this (ci)i∈I partition?

Property 2: Monotonicity

The MRCs of all stack algorithms are monotone (non-increasing).

More space – fewer misses.
Empirically true for many but not all other policies (think RANDOM for
counterexample)

Property 3: Convexity

MRCs of many algorithms are convex (or can be made convex with Talus).
Specifically,

m(tx + (1− t)x) ≤ tm(x) + (1− t)m(x) for all t ∈ [0, 1]

.

(Note that we’re considering a natural extension of m(x) to the reals.)

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 61 / 87

Solving cache partitioning (2)

How do we compute this (ci)i∈I partition?
Bennett Fox in 1966∗ defines an optimal algorithm for the cache
partitioning problem for these properties.

Theorem (Optimal algorithm)

Start with ci = ai for all i ∈ I .
If m is convex and monotone, repeatedly allocate a unit of space to the
tenant i with the largest marginal benefit

mi (ci + 1)−mi (ci) ≥ mj(cj + 1)−mj(cj)

for all j ∈ I by setting ci ← ci + 1 until out of space (
∑

i∈I ci = N).
This algorithm is optimal.

Mnemonic: Greedily climb the steepest slopes.

∗See discussion in Stone et al. IEEE ToC 41(9) 1992
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 62 / 87

Proof Sketch.

Use Lagrangian multipliers adapted to discrete optimization to show that
all derivatives m′i (ci) = m′j(cj) at the optimal point (ci)i∈I for i , j ∈ I .

The running time is O(K + N logK) for K = |I |.∗

∗Galil and Meggido (J.ACM 1979) provide a O(maxK ,K log N
K

) algorithm
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 63 / 87

Combining MRCs

Property 4

MRCs can be combined.

Generally difficult and dependent on workload.
If we assume average interleaving of the workloads, we can
approximate.
From Whirlpool (Backmann et al., ASPLOS 2016).

function combineMRCs(m1,m2):

m = array(N)

s1,s2 = 0

for s=0 to N:

m[s] = m1[s1]+m2[s2]

s1 += m1[s1] / m[s]

s2 += m2[s2] / m[s]

return m

Think of a cache as having a rate of outgoing flow based on evictions.
The flow is exactly the miss rate at that size.
Flows of two constituent caches are then additive, but their
contributions depend on their current flow (miss rate).

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 64 / 87

Exclusive Caches Increasingly Studied for CPU Caches

Benefits of Exclusivity in CPU L2/LL3

“We observe that server workloads benefit tremendously from an exclusive
hierarchy with large private caches ... For a 16-core CMP, an exclusive
cache hierarchy improves server workload performance by 5-12% as
compared to an equal capacity inclusive cache hierarchy.”∗

∗High Performing Cache Hierarchies for Server Workloads – Relaxing Inclusion to
Capture the Latency Benefits of Exclusive Caches, HPCA 2015

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 65 / 87

Exclusive versus Inclusive: Storage

Recent developments:

Low-latency RDMA networks are becoming cheaper, commodity
How low latency? Less than the cost of a system call?
Mesh cache hierarchies now feasible?

I The ratio local cache size
remote cache size → 1

I Happening already with hyper-converged distributed storage systems?
I Inclusive caching is very inefficient in such cases

Persistent memory technologies introduce size differences between
layers in caches hierarchy that are smaller less than before
But exclusive caching has not seen much use in practice
Conjecture: exclusive caching could become more prevalent in the
next decade

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 66 / 87

Cache hierarchies
Some large systems, like web caches, have had to consider the placement
of data in a cache hierarchy.
Underlying assumption in much analytic work:

Independent Reference Model (IRM)

Each item i in cache is accessed with i.i.d. probability qi .

Open question: How accurate is this assumption?

Theorem (Che/Fagin approximation)

The miss rate of item i ∈ I in cache of size N is mi = e−qiτ where τ is the
unique root of ∑

i∈I

(
1− e−qiτ

)
= N

called the characteristic time for the trace. a

aChe et al. IEEE J. Selected Areas in Communications 2002

Relies on qi being small, so ln qi ≈ −qi .

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 67 / 87

Cache hierarchies
Some large systems, like web caches, have had to consider the placement
of data in a cache hierarchy.
Underlying assumption in much analytic work:

Independent Reference Model (IRM)

Each item i in cache is accessed with i.i.d. probability qi .

Open question: How accurate is this assumption?

Theorem (Che/Fagin approximation)

The miss rate of item i ∈ I in cache of size N is mi = e−qiτ where τ is the
unique root of ∑

i∈I

(
1− e−qiτ

)
= N

called the characteristic time for the trace. a

aChe et al. IEEE J. Selected Areas in Communications 2002

Relies on qi being small, so ln qi ≈ −qi .
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 67 / 87

Cache hierarchies

Cache as a low-pass filter

Observe miss rate has phase transition when qi approaches τ−1. Items
with access frequency below say e−1τ−1 are effectively one-time items.
Can thus view cache as a low-pass filter with cut-off frequency from above
of τ−1.

Theorem (Cache dimensions)

Define characteristic time τ` for each cache layer `. Then a cache
hierarchy should have τ` > τ`′ for ` > `′.

The equation for the characteristic (m`i = e−q`iτ`) can be inverted to
calculate space for each layer.

Each layer can track τ` by tracking timestamps of last hit to an item.
Access frequencies varies between layers. Assumption that worthwhile
tracking frequent items (e.g. documents).

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 68 / 87

Cache hierarchies

Empirical view from Facebook’s photo caching hierarchy∗

Hierarchy impact

Lower level caches absorb recency and remove the popularity skew.

∗Huang et al. SOSP 2013
FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 69 / 87

Modern Multi-ter Hierarchies

SMR	HD
D	

SLOW
	FLASH

	

FLASH
	

MRAM
	

RERA
M	

7200	RPM	HDD	

ENTERPRISE	HDD	

NVME	

DRAM	

I$	
D$	 LLC	

SMR	HD
D,	OPTICA

L	
TAPE	

3DXPOINT	

DRAM
	

Figure: Increasing hardware complexity with more layers∗.

∗
Courtesy CachePhysics, Inc.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 70 / 87

Multi-Tier Cache Modeling (LRU)

��

��

���

���

���

�� �� ��� ��� ���

�
��
��
��
��
��
��
��
���

��

���������������

Tier 0 (DRAM) allocation
Tier 1 (3D Xpoint)

Network
Misses

Tier 2 (Local Flash)
Tier 3
(Remote
Flash)

Figure: Model multi-tier cache system performance∗.

∗
Courtesy CachePhysics, Inc.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 71 / 87

Using Cache Utility Curves for Latency Prediction

��

��

���

���

���

�� �� ��� ��� ���

�
��
��
��
��
��
��
��
���

��

���������������

Latency
Target (7 ms)

Cache
Allocation
(>16 GB) Client target 95th %ile latency is 7 ms

Autoset cache partitions size to 16GB
to guarantee avg latency SLOs

Cache Size (GB)

95
th
 %

ile
 L

at
en

cy
 (m

s)

Figure: Model multi-tier cache system performance∗.

∗
Courtesy CachePhysics, Inc.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 72 / 87

Review of Some Cache Modeling Use Cases

Remote
Tier

Monitoring Auto-Select Policies
(dynamic parameters)

Lower is better

42 84 128 170 0
Cache Size (GB)

M
is

s
R

at
io

0.0

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
Cache Size(GB)

M
is

s
R

at
io

Block Size (KB)
4
16
64
256
1024

Latency Reduction
(Thrashing Remediation)

Latency Guarantees Accurate Tiering
Tier 0 allocation for this client

Tier 1 allocation for this client Latency
Target (7 ms)

Cache
Allocation
(>16 GB)

Client target IO latency is: 7 ms
Guarantee avg latency: autoset
cache partition to 16GB

Multi-Tenant Isolation

vs

msr_mds (1.10%) msr_proj (0.06%) msr_src1 (0.06%) t01 (0.05%)

t06 (0.33%) t08 (0.04%) t14 (0.38%) t15 (0.10%)

t18 (0.08%) t19 (0.06%) t30 (0.06%) t32 (0.98%)

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0 40 80 0 500 1000 0 200 0 200 400

0 50 100 0 300 600 0 100 200 300 0 200 400

0 100 200 0 200 400 0 100 200 300 0 9 18
Cache Size (GB)

M
is

s
R

at
io

smax = 8K exact MRC

msr_mds (1.10%) msr_proj (0.06%) msr_src1 (0.06%) t01 (0.05%)

t06 (0.33%) t08 (0.04%) t14 (0.38%) t15 (0.10%)

t18 (0.08%) t19 (0.06%) t30 (0.06%) t32 (0.98%)

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0 40 80 0 500 1000 0 200 0 200 400

0 50 100 0 300 600 0 100 200 300 0 200 400

0 100 200 0 200 400 0 100 200 300 0 9 18
Cache Size (GB)

M
is

s
R

at
io

smax = 8K exact MRC

Client 0 Client 1

Part. 0 Part. 1

Figure: Some example use cases of cache utility curves∗.

∗
Courtesy CachePhysics, Inc.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 73 / 87

Cache prefetching
Low-level caches often absorb repetitive work – think of scans or loops.
What if we could predict what will be requested, and have it ready
in time?

Cache prefetching

When a cache requests items ahead of time in anticipation of their access.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 74 / 87

Cache prefetching approaches (1)

How should we determine which items to request ahead of time? Key
approaches are two-fold.

Sequence-based: anticipate access to consecutive block identifiers
I AMP∗ (Adaptive Multi-Stream Prefetching) dynamically adjust the

prefetch length and timing to avoid cache pollution.
I AMP tries to be careful not to request data that is likely already in

flight (prefetch wastage)
I TaP† uses a table to track longer sequentiality, thus detecting

interleaved workloads

∗AMP: Gill & Bathen, FAST 2007
†Li et al. FAST 2008

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 75 / 87

Cache prefetching approaches (2)

How should we determine which items to request ahead of time? Key
approaches are two-fold.

History-based: tracking deep correlation among past accesses,
normally expensive

I Probability Graph∗ takes a Bayesian approach, creating dependency
graph of items being accessed (expensive)

I QuickMine† uses data mining techniques, but requires hint from the
application

I Mithril‡ also uses data mining but for teasing out mid-popularity items.

∗Griffionen & Appel, USENIX ATC 1994
†Soundarajan et al. , USENIX ATC 2008
‡Yang et al. SOCC 2017

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 76 / 87

Mithril cache prefetching

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 77 / 87

Challenges and Open Questions
Time-varying behavior of caches are not well understood.

Many workloads appear to have time periods of very low cache
utilization.
In context of Cloud and Edge computing, should we give up memory
to save money and rent it back in the nick of time to warm for next
busy period?

Figure: Each pixel denotes hit rate of in MSR MDS trace assuming cache started from
scratch at time x and ran until time y .

Need tools to model hit rate dynamics, and understand periodicity in
the data to anticipate its behavior.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 78 / 87

Challenges and Open Questions

Is the persistence property of non-volatile memory useful for caching?
I Can we know what data is still useful when the cache comes back up?
I What expectations can we have for data consistency with possibly very

stale data?
I Facebook struggled to maintain stronger levels of consistency in their

long-lived caches.

Challenges in mesh cache hierarchies.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 79 / 87

Takeaways

Cache replacement has gotten a lot of mileage out of LRU, but
workloads and questions shifting
Plethora of new replacement algorithms, and modifications to
problem/interfaces.

I Priority queues, application-level hints, cache prefetching

MRCs allow you to reason about parameters you can use to change
and optimize your cache.

I Including how to partition space between tenants, resize a cache, etc.

Miniature simulation allows you to quickly reason about different
cache replacement algorithms
Cache hierarchies abound, but difficult to reason about.

Caching: an old field of paramount importance, ripe with
low-hanging fruit

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 80 / 87

Mimircache: Cache Analysis in Python

Tool for efficient and easy cache analysis.

Two versions: PyMimircache (accessible) and CMimircache (fast)
Allows researchers to study and design cache policies.
Allows system administrators to analyze and visualize cache
performance.
Main goals:

I performance
I extensibility and flexibility
I ease of use

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 81 / 87

Mimircache: Cache Analysis in Python

What can Mimircache do?

Help visualize and analyze your cache policy and workload
I Heatmaps for understanding cache dynamics
I Various visualizations of workload similarity
I Scan visualizer

Help design and refine your caches
I Compare different cache replacement algorithms
I Implement and test your own caching strategies

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 82 / 87

Mimircache: Cache Analysis in Python

Using Mimircache.

Instructions: http://mimircache.info/

Installation: $ pip3 install pymimircache

from PyMimircache import Cachecow

c = Cachecow()

c.csv(dat, init_params={"real_time": 1, "label": 5})

iterate through the workload requests

for req in c:

print(req)

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 83 / 87

http://mimircache.info/

Mimircache: Cache Analysis in Python

Another example

print some info about the workload

print(c.stat())

plot hit ratio curve with comparisons

c.plotHRCs(["LRU", "LFU", "Optimal", "ARC", "SLRU"])

interval hit ratio

c.twoDPlot(plot_type="interval_hit_ratio",

cache_size=20000)

draw heatmap of hit ratio between start (x) and end (y) times

using real time of requests (r) within a particular interval

c.heatmap(plot_type="hr_st_et", cache_size=20000,

time_mode="r", time_interval=200000000)

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 84 / 87

Mimircache: Cache Analysis in Python
Example output #1.

Figure: Hit rate in MSR MDS trace on given interval.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 85 / 87

Mimircache: Cache Analysis in Python
Example output #2.

Figure: Hit rate of various cache replacement policies on MSR MDS trace.

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 86 / 87

Mimircache: Cache Analysis in Python
Example output #3.

Figure: Heatmap with each pixel showing hit ratio on the portion of MSR MDS trace
between logical time x and y .

FAST’19 Tutorial Caches in the Modern Memory Hierarchy Feb 25 2019 87 / 87

	Cache partitioning
	Cache hierarchies

