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Epidemic preparedness depends on our ability to predict the trajec-
tory of an epidemic and the human behavior that drives spread in
the event of an outbreak. Changes to behavior during an outbreak
limit the reliability of syndromic surveillance using large scale data
sources such as online social media or search behavior, which could
otherwise supplement healthcare-based outbreak prediction meth-
ods. Here, we measure behavior change reflected in mobile phone
call detail records (CDR), a source of passively-collected real-time
behavioral information, using an anonymously linked dataset of cell-
phone users and their date of influenza-like iliness diagnosis dur-
ing the 2009 HIN1v pandemic. We demonstrate that mobile phone
use during illness differs measurably from routine behavior: diag-
nosed individuals exhibit less movement than normal (1.1-1.4 fewer
unique tower locations, p < 3.2 x 10~3) on average in the 2 to 4
days around diagnosis, and place fewer calls (2.3-3.3 fewer calls,
p < 5.6 x 10~%) while spending longer on the phone (41-66 seconds
average increase, p < 4.6 x 10~ 10) than usual on the day following
diagnosis. The results suggest that anonymously linked CDR and
health data may be sufficiently granular to augment epidemic surveil-
lance efforts, and that infectious disease modelling efforts lacking
explicit behavior change mechanisms need to be revisited.
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I nfectious disease outbreaks remain a major threat to hu-
manity in the 21st century, as evidenced by the ongoing
pandemic of Coronavirus disease 2019 (COVID-19) (1) and 5
of 10 threats to global health identified by the World Health
Organization (WHO) being related to infectious disease (2).
Estimating the current and future burden of disease through
surveillance and predictive modelling is essential for appropri-
ate allocation of resources aimed at reducing impact, especially
in the early stages of an outbreak.

Traditional influenza healthcare-based surveillance methods
rely on data gathered from symptomatic individuals seeking
medical treatment from doctors. These approaches suffer from
delays in reporting that differ from setting to setting and diffi-
culty in identifying unusual activity (3). Such issues led to the
development of alternative syndromic surveillance methods (4)
that combine a broad range of data sources on behavioral
markers; some were developed, used, and assessed during the
H1N1lv pandemic (5). These surveillance methods include an-
alyzing patterns in social media such as Twitter (6, 7), search
engine queries (8-10), over-the-counter medication sales (11),
airport traffic patterns (12), city traffic patterns (13), cell
phone surveys (14), or ensemble methods that incorporate
survey data (15). Directly inferring disease incidence from
these sources also assumes that the cause of behavior change is

known and usually associated with influenza. Yet, studies in-
dicate that individuals alter behavior for various reasons even
when not symptomatic, e.g., to avoid infection (16) or due
to anxiety (17), complicating estimation of infectious disease
burden (18).

Whereas data sources that depend on active, conscious user
participation may produce unreliable estimates (14, 20), call
detail records (CDR) can act as a passive pattern sensor (21).
Mobile networks pervade most nations: in raw numbers, 2019
cellphone subscriptions in developed and developing countries
exceeded 100% of their populations (22), although mobile use
invariably skews away from under-resourced groups (23). CDR,
collected in real-time, contain spatio-temporal information that
capture mobility. Past analyses have used cell phone data to
study human movement scaling (13), social network structure
inference (24), poverty and wealth prediction (25), and risk
and spread of multiple diseases including malaria (26, 27),
cholera (28), and influenza (29). Furthermore, smartphone
apps have been used to track behavior change in relation to
influenza onset (30), or as contact trackers during the COVID-
19 pandemic (31, 32). These methods are all limited by either
unreliable health data (self-diagnosed symptoms), aggregate-
level data to model the population (33), or fraught with privacy
concerns (34). Until now, the link with verified health data at
the individual level has been missing.
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Infectious disease control critically depends on surveillance and
predictive modelling of outbreaks. We argue that routine mobile
phone use can provide a new source of infectious disease
information via the measurements of behavioral changes in
call detail records (CDR) collected for billing. In anonymous
CDR metadata linked with individual health information from the
A(H1N1)pdmO09 outbreak in Iceland, we observe that people
move significantly less, and placed fewer but longer calls in
the few days around diagnosis than normal. These results
suggest that disease transmission models should explicitly
consider behavior changes during outbreaks, and advance
mobile phone traces as a potential universal data source for
such efforts.
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Fig. 1. Combining health records with call data records. (/eft) Cell towers act as a proxy for location which, when coupled with the timestamp, allow movement inference.
Different colors show inferred movements of a typical cellphone user at different time periods over a period of three days. (right) The epidemic curve for the 2009 HIN1v
outbreak in Iceland, showing a single pronounced peak. The green dotted line shows the number of laboratory samples taken, the red line shows the number of those testing
positive for HIN1v, and the black line shows the estimate of suspected HIN1v cases per week from the recorded ILI incidence (19). The expected H1N1v positive cases (blue
dotted line) are extrapolated from the suspected ILI cases and the percentage of samples found positive each week.

Here, we explicitly combine CDR, with information from
the 2009 H1N1v pandemic collected by the national healthcare-
based surveillance system used by all health providers in Ice-
land through a protocol that maintains reasonable expectations
of individual privacy from government surveillance. The in-
fluenza pandemic reached Iceland in May 2009 (19), with a
shallow peak before the school holidays in May/June 2009,
followed by a dip over the summer and a strong peak in Oc-
tober 2009 (Fig. 1). The outbreak started in the capital of
Reykjavik, home to 37% of the population of 318,499, ap-
proximately one week ahead of the rest of the country (19).
Health officials recorded the date of diagnosis (DoD) of 10,175
clinically diagnosed cases of influenza-like illness (ILI) around
the country between 4 June 2009 and 11 February 2010. Of
3,011 samples taken, 700 were confirmed by a real-time poly-
merase chain reaction (PCR) protocol to be HIN1v influenza
infections (19); we assume that other patients diagnosed with
ILI were infected with the same strain, which displaced other
strains until February 2010 (35).

We analyze behavioral patterns in Iceland extracted from
the CDR, provided in a deidentified format by a major mobile
network operator (MNO). The CDR logs span a broad time
period around the 2009 outbreak. Mobile phone owners are
anonymously matched to records of ILI diagnosis, yielding
DoD and CDR traces for 1,434 diagnosed individuals after
data processing. We measure and identify behavioral traits
that show significant changes in the diagnosed group around
the DoD compared to a control group.

Methods

Data Collection. The original dataset joins individual CDR
that MNOs routinely gather for billing purposes with individ-
ual level ILI diagnosis data from Iceland’s Centre for Health
Security and Communicable Disease Control (CHS-CDC), that
collects and stores all records of ILI diagnoses in Iceland. We
developed and used a privacy-preserving data hand-off and
merging protocol approved by the Iceland’s Bioethics Commit-
tee (Visindasidanefnd): a large MNO sent encrypted phone
IDs and national identification numbers (NINs, which are pub-

lic information in Iceland), to the CHS-CDC. The CHS-CDC
supplied dates of ILI diagnoses for NINs, then replaced NINs
with an anonymous encrypted identifier before providing the
data to us (SI:Data Linking and Privacy). The MNO pro-
vided us with CDR data (SI:Mobile Network Data) containing
the encrypted IDs of the phones on either side of a call, the
timestamp, the length of the call (in seconds), and the geo-
graphical coordinates of the cellphone towers that interacted
with the phones (Table S1). No demographic or private data,
such as age, gender, or contents of calls or texts, are included.
The cell tower accessed during normal phone use provides a
proxy for the device’s location. The granularity of location
varies with locality—regional tower density increases propor-
tionally with regional population (Fig. 1). At the time, MNOs
provided cell coverage for virtually all residences in Iceland,
either directly through their network or through a roaming
service. We filter out individuals with multiple subscriptions
(SL:Data Preprocessing). Using phone ownership information,
each phone is matched to the DoD of its owner for the subset
of users that pay only for one phone. This post-processed
subset, referred to as the dataset below, accounts for 25-30%
of the MNQ’s users and encompasses all data analyzed in our
paper. We define the home tower of each individual as the
tower that picks up more calls and texts between midnight
and 8 am than other towers. The distribution of home tower
locations was strongly correlated with residential census counts
for the corresponding postal codes for our dataset (r = 0.86,
p < 8 x 107*) and among those with ILI diagnosis (r = 0.88,
p<2X 10_43). The home towers were thus spatially repre-
sentative for the entire Icelandic population. We focus our
analysis on the 1,434 diagnosed users who generated sufficient
CDR data to establish a home tower location in the 4-week
period centered on their DoD. De-identified aggregate data,
code and documentation used in our analysis is available at
https://github.com/SimBioSysLab/cdr-open-code.

Feature Extraction. To characterize user behavior, we extract
36 features (independent variables) from both incoming and
outgoing CDR data encompassing movement, activity, and

Vigfusson et al.


https://github.com/SimBioSysLab/cdr-open-code

Table 1. Feature Characteristics from the 29-day period around each
individual’s DoD (additional characteristics in Table S2). The final
column indicates which days relative to DoD show a statistically sig-
nificant difference between the control and diagnosed groups.

Feature Control Diagnosed Anomalous Days
Mean Mean
Unique Locations Visited 3.04 2.74 -12,-2,-1,0,1,2,3,4
Number of New Location Visited 0.5 0.43 1,3
incoming 2.25 2.02 z
Unique Contact Count outgoing 2.50 2.28 1,2,3,6
both 4.04 3.67 2
incoming 0.61 0.50 %)
New Contacts outgoing 0.65 0.55 1,8,6
both 1.19 1 0,1,3
incoming 190 480.51 0,1,2
Call Duration (s), total outgoing 162 435.09 0
both 479.5 915.60 2
incoming 3.10 2.84 2
Calls Count outgoing 3.60 3.37 1,2
both 6.66 6.22 1
incoming 2.71 2.87 -10
Texts Count outgoing 1.74 1.93 1,2
both 4.46 4.79 -10, 11
incoming 5.78 5.71 2
Calls and Texts count outgoing 5.34 5.30 1,2
both 11.12 11.01 2
incoming 133.35 140.74 -1,0,1,2,4, 11
Mean Call Duration outgoing 107.96 106.74 z
both 143.14 149.84 -8,-1,0,1,2,3,4,11,13,14
Top-3 Contacts incoming 0.68 0.69 %)
by Duration outgoing 0.70 0.69 z
(Sl:Sensitivity Analysis)  both 1.37 1.38 1
. incoming 1.57 1.33 z
Remaining Contacts outgoing 1.80 1.58 1246
by Duration both 3.37 2.92 146
incoming 0.58 0.56 12
Z;p';igsg;z;ts outgoing 0.63 0.61 1,2
both 1L 1.17 1
- incoming 1.67 1.46 0
E;:z:‘[‘]”;gfmams outgoing 1.88 167 9,2,6
both 3.54 3.13 z

social network behavioral patterns (SI:Feature Extraction).
Most features exhibit a right-skewed distribution (Fig. S2)
and share general characteristics across control and diagnosis
groups. They include the following (boldface in Table 1).
Unique locations visited measures the number of unique
tower coordinates connected to by the cellphone within a time
interval (bin). This feature helps describe movement during
the time period, but can inflate in areas where multiple towers
can provide cellular signal.

Mean call duration (incoming and outgoing) measures
call activity by dividing the total duration of calls by the
number of calls the user placed or received in the time interval.
Number of calls (outgoing) measures the number of calls
placed by the device in the time interval.

Departure from Routine Behavior. We use zf;q = FE(i,d) to de-
note the raw feature value for a feature f, extracted from the
CDR by function F, for individual i, and on day d. Extraction
is performed for all features f in Table 1.

To control for the weekly behavioral routine of individual 7,
each feature value is detrended through linear regression over
values of the same weekday in the past W weeks. Specifically,
let

Pj = T i (d—7-(W—35)) for ] = O, 1, ey w

and denote by J those indices j € {0,1,..., W} where p; is
defined. Then (p;);cs is the measured behavior on the same
day of the week from the previous W weeks before day d for
feature f and individual ¢, with pw denoting the behavior in
week W. We used W = 10 weeks of past data to correct for
seasonality in our experiments, which gave comparable results
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to an alternative approach to detrending based on ranking
features and normalizing them (SI:Seasonality).

Based on the data, we used a linear model to capture the
change in values over time p; = 8j + a + ¢; with errors ¢; for
each j € J, we fit parameter values for & and 3 to minimize
the squares regression error

argminZE? = argminz (p; — Bj — a)2 .
“B o jes “B o jes

The detrended feature value, measuring the deviation from

weekly routine, is then defined as

Zfid = T fid — /BW — &.

Control Group. Each diagnosed individual is matched with a
control individual from the undiagnosed group, based on home
location. All measurements thus far have applied to individu-
als diagnosed with ILI during the epidemic. To compare the
diagnosed population against a control population, a subset is
selected from the rest of the data—those not diagnosed for ILI
are assumed to be uninfected though they may show behavior
consistent with symptoms but are well, or have ILI symp-
toms but did not use health services. Of 74,644 people, we
were able to identify home towers for 36,140. Each diagnosed
person’s control is selected randomly from the undiagnosed
individuals among the 36,140 who share a home tower with
the diagnosed individual. For this dataset, control selection
exhibited no noticeable differences across three methods: se-
lecting randomly, matching for home tower, or matching home
tower and frequency of calls (36).

We analyze the pattern differences between the means of
the detrended feature values (zf;4) of the individuals in the two
groups. The 29-day range (2 weeks either side of DoD) centered
around every diagnosed individual’s DoD range [—14, 14], with
DoD mapping to 0. Controls use the same days of data as
their diagnosed match. The average deviation from weekly
routine on all days in the range are compared (Fig. S9) with
original feature values (zf;q) shown in Figs. S2, S3 and S8.

Statistical Comparison. We compare the behavior of the diag-
nosed and control groups across each detrended feature value
zfiq and each day using the Kolmogorov-Smirnov statistic. To
counteract the increase in Type I errors caused by running
multiple significance tests, we use the Benjamini-Hochberg
(BH) procedure to control the False Discovery Rate (FDR), as
it presents the most conservative FDR correction for this mix;
the adjusted p-values can then be used to assess the evidence
for or against the null hypothesis. The BH procedure assumes
independent tests. Some tests act on dependent, interacting
samples—e.g., a value on a specific day is ranked against
values from the same day of the week for several weeks prior—
whereas others are independent tests. Confidence bands for
the KS-test are computed and plotted for each day of the pri-
mary three features deemed significant based on the p-values
with the FDR correction (Fig. S9). The significance test and
the confidence interval calculations use o = 0.05.

Results

Several features show significant change between the routine
behavior of the control and diagnosed populations around their
DoD. The actual time period and magnitude of the behavioral
change varies by feature (Table 1, rightmost column), but the

PNAS | January4,2021 | vol. XXX | no. XX | 3



Py ‘

0 — YAN
AN
s 2 "
-05

ZZ AN '*\,L/\/\ AN @)

: |

2

AR

Change in call duration (seconds)

-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Change in number of towers visited
b

Days from diagnosis (0 is DoD)

-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Days from diagnosis (0 is DoD)

\'2

-3

Change in number of calls

-14-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14

Days from diagnosis (0 is DoD)

Diagnosed (1434 individuals) == Control (1434 individuals)

Fig. 2. Changes in average phone use behavior associated with diagnosis. (/eft) Users visit fewer locations on days around diagnosis. (middle) They make and receive
longer phone calls on days near diagnosis. (right) They initiate fewer calls on the days after diagnosis, with the exception of the day of diagnosis itself. Graphs display the mean
deviation from “normal” routine behavior (z s;4) for each group on the relative day of illness determined by date of diagnosis (day 0). Confidence intervals (2.5% to 97.5%) are

calculated using bootstrapping (Sl:Visualizations).

number of unique locations visited, mean call duration, and the
number of outgoing calls show the most pronounced signals of
behavior change.

Less movement. The unique locations visited feature in-
dicates that the diagnosed group tends to travel less than
usual, even before diagnosis. Such lower travel patterns co-
incide with the typical symptomatic period of influenza (37).
The maximum effect is observed on the day following diagnosis,
when diagnosed individuals travel to 1.1-1.4 fewer locations
than normal. Differences are observed between the diagnosed
and control groups from two days prior to the DoD until four
days after DoD (K S > 0.084, p < 3.2 x 10~?, Figs. 2 and S10).
Other days in the 4-week period display the diagnosed and
control groups acting similarly.

Longer calls. Mean call duration shows that people tend
to make longer calls on average on the day after the DoD
(Fig. 2), when significant differences are observed between
the diagnosed and control groups (KS = 0.155, p < 4.6 X
1071, Fig. S22). On the day following diagnosis, diagnosed
individuals spend an average of 41-66 seconds longer on the
phone than usual.

Fewer calls placed. Number of outgoing calls gives an-
other perspective of behavior following diagnosis. Although
call duration increases around DoD, the number of outgoing
calls decreases on the day after the DoD with an average of
2.3-3.3 fewer calls than is routine (K.S = 0.102, p = 5.6 x 10~ %,
Fig. S18). On the day of diagnosis, diagnosed individuals in-
crease outgoing calls relative to their routine compared to the
days before and after.

Statistical significance through FDR-corrected p-values is
supported by KS confidence intervals for nearly all compar-
isons (Figs. 2 and S9). Notably, the diagnosed group displays
significant changes in mobility even prior to seeking healthcare
and receiving a diagnosis (SI:Visualizations).

Limitations. The results depend on the metadata arising from
mobile phone use, presenting both advantages and draw-
backs (21, 33). The increased data bandwidth provided by
MNOs and rapid device and app development over the past
decade has altered user behavior patterns to communicate
more via internet-based applications and less via calls and text.
In our dataset, cellular internet data access (denoted GPRS)
provided additional location information to CDR records of
calls and texts, a situation that has likely shifted since the
HIN1 outbreak (SI:Comparing CDR and GPRS Data). Three

years following the epidemic, the Icelandic CDR and GPRS
data contained a stronger location proxy than in 2009 due
to more smartphone apps periodically connecting to cellular
towers for Internet access but poorer information for features
pertaining to call duration, frequency, and top contacts. Since
many nations experience limited Internet access (53.6% of
world population in 2019 (22)) and smartphone availability
(39.4% worldwide (38)), it would be reasonable to assume
that call and text usage in these locations may follow similar
patterns as in our dataset, but we caution against assuming
all cell phone behavior to be universal (33). Further, mobile
phone ownership may bias against those in greatest need of
public health intervention. The results report aggregate behav-
ior change which are likely to include patterns caused by other
illnesses or injuries. Our approach depends on maintaining
individual-level behavioral histories since the signal we iden-
tified concerns departure from routine behavior rather than
the actual behavior itself, as seen by comparing the raw and
detrended distributions six days prior to diagnosis (Fig. S2)
with the day following the DoD (Fig. S3). Finally, Iceland
contains a small, mostly homogeneous, and generally affluent
population bound to an island, with idiosyncratic behavior,
including unusually high mobile phone usage. Seasonal ef-
fects may be exaggerated in Icelanders compared to other
populations due to Iceland’s proximity to the Arctic.

Discussion

The combination of mobile phone traces with health records
reveals behavior change associated with symptom onset for
HIN1v in unprecedented detail. Observations of behavior in
CDR are consistent with our knowledge of influenza pathology:
individuals become infected and begin showing symptoms
which their behavior reflects; they then access health care,
receive a diagnosis, and display activity patterns different
from normal for a period of time, after which they return to
normality. This picture depicts a group trend; however, in
an effort to avoid ecological inference fallacy (39), we observe
that individuals’ changed behavior varied widely within a
group. The variability of individuals’ behavioral responses
suggests that CDR data is best suited for aggregate analysis
of symptomatic behavior.

Although we cannot know the exact cause in each individual
case, collectively, the duration of anomalies is consistent with
estimates of influenza symptom duration (40). The use case in
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CDR Data De-identified CDR

subject a si(a)
object b si(b)
date date
du::m::n Mobile Network duration Brciey Feature extraction
wer . . .
Operator (MNO) i tower Running of models
(3 party)
\__ Secretkey s;
Interaction
with model

Government
Health Officials

:

Epidemic model

ID Mapping
(0y(x), 5¢(x))

for all customers x

Mobile Network Broker

Operator (MNO) i

Model retraining
and calibration
using new labels

100
. “’\f\/t\4\
[

Updated model

(3% party)
\__ Secretkeys; /
o a Labeled data

person o; (a)
date of diagnosis
Secret key o;

Government
Health Officials

Fig. 3. Privacy-preserving data sharing protocol. Privacy-preserving architecture for syndromic surveillance using CDR data for future experimental design. An independent
3rd party broker is provided with real-time de-identified CDR data, extracts features and runs the prediction models to generate an epidemic curve (left, (O1)). The broker could
also be provided labeled anonymous health information to join with the CDR data to calibrate or retrain the classifiers (right, (02)). The design accommodates mutual distrust,
ensuring that health officials cannot monitor behavior or track mobility of individuals, that MNOs are not provided with any health information of customers, and that the broker

only operates on de-identified data.

Iceland demonstrates that disease monitoring systems could
be expanded with CDR, already passively collected by local
mobile operators, that can discern behavior consistent with
ILI symptoms while following a protocol to preserve user
privacy, and our approach provides a complementary way
of estimating the duration of symptoms, and therefore an
important component for estimating the economic impact of
an outbreak.

The results presented here have important implications for
modelling disease dynamics. As individuals change behavior
due to symptom onset, their potential to transmit is modified,
yet, modelling efforts that have been central to mitigation
measures for novel pathogens tend to ignore behavioral effects
due largely to a dearth of quantitative information. Such
limitation is evident in the case of modeling of SARS-CoV-
2 transmission, for instance, where different groups vary in
their ability to alter their behavior in response to exposure or
illness (31, 41). Here, we quantify the direction and magnitude
of the behavioral change effect for HIN1v on an atypical
population that exhibits fewer sources of variability than most.
Other pathogens and populations will have different properties
that will require a context-specific investigation. Our work
provides a methodology for capturing and quantifying behavior
change that can be used to improve the predictive power of
models in future outbreaks. We argue that such an approach
would have an important part to play in outbreak response
for novel pathogens.

A separation of access to private data is vital for ensuring
public trust. While aggregation helps protect privacy (31),
enabling health officials to interact with the data increases the
risk to individual or group privacy. Concerns have being raised
over government responses to COVID-19, where contacts of
those infected are traced from historical CDR data (34). Our
data sharing protocol (Fig. 3 and SI:Privacy-Preserving Data
Sharing) mitigates risk by ensuring that: (a) mobile operators
that hold cell phone metadata do not have access to any
new health information for their customers held by health
officials, and (b), health officials do not access cell phone
metadata. To further strengthen the separation, differential
privacy methods can be used to introduce controlled noise to
the data in such a manner that aggregate statistics remain
unchanged while provably protecting the privacy of individuals
and small groups (42, 43). At the same time, communicating
the collective benefit of studies such as this one, and the effort
taken to protect data, is necessary to help the public decide
when the public health value of the information provided is
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worth the risk to their privacy.

Our results suggest that CDR metadata may allow surveil-
lance of symptomatic diseases whose symptom intervals are
sufficiently long and behavioral changes sufficiently pronounced
that they produce a signal that is visible at the resolution
afforded by the data. The granularity of these data is rapidly
refining, both spatially with denser tower infrastructure being
built in response to population growth and newer generations
of devices (e.g., 5G), and temporally as mobile phones be-
come increasingly used for Internet applications. Greater data
resolution may help offset the relatively small effect sizes in
our results, which are confounded by other brief interrup-
tions to people’s routines, and allow the approach to extend
beyond a large-scale epidemic of a transmissible pathogen.
Environments lacking health monitoring infrastructure but
where mobile phone use is prevalent and consistent (33) have
the greatest potential gains from CDR-based epidemic surveil-
lance. In particular, establishing the nature of symptomatic
behavior provides an opportunity to use artificial intelligence
to identify patterns suggesting an individual or a group is
symptomatic, and thus estimate the numbers of cases. We are
optimistic that further study could establish the full generality
and versatility of infectious disease surveillance using call data
records on their own.
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Table S1. The CDR calls table contains 123,924,260 call-detail records between June 4, 2009 and February 11, 2010 in the following format.

Subject  Object Timestamp Incoming  Call/Text  Length (s) Tower (Latitude, Longitude)
4197 89504  2010-05-06 16:07:24 True Call 7 (65.23456, -18.0101)
98937 52674  2010-09-17 10:34:46 False Text 0 (65.34567, -18.09876)
51993 607 2010-09-29 01:47:50 False Call 25 (65.12345, -18.54321)

The first record (for example) reads: phone with ID 4197 is called by the phone denoted 89504 at 16:07 on May 6, 2010.
The call lasted 7 seconds. The subject phone connected with the tower located at (65.23456,-18.0101) to receive the call.

Supplemental Information

1. Data Linking and Privacy

The Iceland National Bioethics Committee approved the following
protocol of linking CDR and ILI-diagnosis data to ensure three
privacy concerns are met: (i) that the MNO does not obtain health
diagnosic information for its subscribers, (ii) that the CHS-CDC
does not obtain CDR data, and (iii) that the researchers neither
learn of original unencrypted phone numbers nor the NINs of in-
dividuals contained in the dataset. The process began with the
MNO encrypting all the phone numbers with a secret, private key.
Next, the MNO sent the encrypted numbers and the associated
bill-paying NIN (recall that Icelandic NINs are public information,
locally called kennitala) to the CHS-CDC. Third, the CHS-CDC
merged the encrypted phone number and NIN data with their health
data by joining on the NIN. Fourth, the CHS-CDC cryptographi-
cally hashed the NINs with a nonce (a disposable private key) to
deidentify them. Finally, the CHS-CDC provided us with health
data joined to the encrypted phone IDs, and the MNO provided us
with CDR data containing encrypted phone IDs.

2. Mobile Network Data

CDR Metadata. Call-detail records were provided by an MNO in three
installments as a database table in the aforementioned format (Fig. 1
and Table S1), containing 1,517, 276, 930 records and spanning more
than a three year period from February 1, 2009 to June 30, 2012.
Each record in the table contains anonymous identifiers (subject
and object) for the two phones involved in the call. The incoming
field gives the direction of the call, i.e., whether it was initiated by
the subject. For every call where both phone numbers are MNO
customers, the calls table contains two rows: one per constituent
of the call. The two records will have the subject and object fields
switched because the tower and incoming information are presented
from the perspective of the subject phone ID. For legacy reasons, all
CDR pertaining to text messages have an object ID corresponding
to a fixed destination number (the short-message service center
(SMSC) gateway) rather than the destination phone number of the
text message. The features extracted from the text metadata thus
cannot be used to make statements about text recipients.

GPRS Metadata. When mobile phones access the Internet, they use
protocols that differ from voice and text (SMS). These accesses
produce metadata logs that differ from CDR metadata. We were
provided with General Packet Radio Service (GPRS) logs from
the MNO that had been deidentified by the same process as the
CDR data. These data capture only a timestamp, the encrypted
subject phone number, tower location, and data transfer volume
statistics. The GPRS logs spanned the same time period and
contained 101,489,436 records. No destination is recorded for
Internet data usage entries.

3. Data Preprocessing

The cell tower coordinates pinpoint a unique GPS position (lati-
tude/longitude); however, every cell tower base station contains
three directional antennas that each span a horizontal sector of 120°.
In the dataset, the MNO specified which of the three antennas was
used for each interaction. Our early experiments suggested that the
antenna orientation alone in the CDR data was inadequate to deter-
mine more granular positioning or trajectory of a subject. Among
the contributing factors, we note that orientation, terrain, altitude,
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96,245 82,660 3556

G1: single ID, single NIN G2: multi ID, single NIN

G3: single ID, multi NIN

93,409 3514

Elements with no calls

Fig. S1. Data Preprocessing. Venn diagram of the division of cell phone number
groups, highlighting that some cell numbers have been paid for by a succession of
multiple accounts, and that some subscribers pay for multiple cell phone numbers.

geography, and transmission power all affect the signal strength
between a cellular device and a particular tower, and that the likeli-
hood of interaction with a given cell antenna further depends on
protocol (2G/3G/4G, voice call vs. GPRS data) and the load of
nearby cell towers. We thus discard the orientation information
and combine the three antennas into a single tower GPS coordinate
during feature extraction.

Cell phone numbers are inherently not bound to a single indi-
vidual; they can change ownership or a single individual can own
several phone numbers. Since the health data links the CDR data
via the NINs, the question remains whether the person billed for a
phone number is the same as the one diagnosed with ILI. Grouping
based on de-identified NINs and phone IDs yields four different sce-
narios (Fig. S1). Two of the four groups allow us to match a specific
diagnosis date with a NIN and the phone (or phones) specifically
used by that one person (excluding any dependents).

Using (phone ID, NIN) pairs, the groups are:

o G1 (single ID, single NIN): Every phone ID is paid for by one
NIN, and every NIN in this group only pays for one phone
number during the time period in the data. Thus, the phone
numbers never change ownership in our period, and the person
only pays for that one phone. Here, we assume that the person
billed for the phone and the person using it day-by-day are
one and the same.

e G2 (multi ID, single NIN): Every phone ID is paid by one NIN,
and every NIN in this group pays for more than one phone
number. Families, small companies, and people with multiple
phones for themselves (e.g., personal and work) comprise this
group, as well as those whose phone number changes during
the time period.

e G3 (single ID, multi NIN): Every phone ID is paid by multiple
NINs during the time period, but each NIN only pays for
one phone number. The tariff billing codes that accompany
the CDR data indicate that the majority of these phones are
company phones that switch between NINs regularly.

e G4 (multi ID, multi NIN): Every phone ID is paid by multiple
NINs during the time period, and each NIN pays for multiple
phones. This group has large crossover with G2 and G3.

G1, the largest group, contains over 93,000 one-to-one pairs of
phone numbers and NINs, which we assert with high confidence
represent the same individual. G1 also is disjoint from the other
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groups which themselves overlap (Fig. S1). The members of G1
who were diagnosed with ILI comprise our dataset. Future work
could incorporate the progressively larger and more representative
datasets: the entire G1 set, G1 combined with those phone numbers
in G2 that can be inferred to belong to individuals, and all groups.
We refer to G1 as the “dataset” in the paper.

Characterizing Bias. We considered the scope of sampling biases
in the data sets to ascertain whether the dataset represents the
population. There were three major mobile network operators in
Iceland in 2009, each surpassing 25% market share. That year, the
penetration rate of cell phone subscriptions was 1,039 per 1,000
people (44). The Icelandic population in 2009 was homogeneous
with no identified socioeconomic factors that would significantly
affect cell phone ownership. There was minimal vendor lock-in for
two reasons: (1) binding contracts or termination penalties were
uncommon, (2) the porting of cellular numbers between the Icelandic
mobile phone providers was simple. All three MNO providers
provided 2G or better cell coverage in both rural and urban areas,
covering virtually all residences in Iceland through their own tower
infrastructure or roaming partners. Residential cell coverage was
thus not a driving factor in the dispersion of subscribers across
mobile network providers. We compared population data per postal
code in Iceland according to the 2009 census (45) with the inferred
home tower location, and corresponding postal code, of subscribers
in our dataset. We found the correlation to be strong for both
the dataset (r = 0.86, p < 8 x 10749) and among those with ILI
diagnosis (r = 0.88, p < 2 x 10~%3), suggesting that the data set
is spatially representative of the entire adult Icelandic population.
However, a source of bias in our dataset is the disproportionately
small number of children and teenagers (under 18 years of age)
who own and pay for their cell phone subscription. For privacy
reasons, we were not permitted to use age information of either
subscribers or those diagnoses with ILI as part of this study, and
we are therefore unable to quantify this bias.

4. Feature Extraction

The choice and representation of features from the data can substan-
tially impact how well behavioral changes can be quantified. We
extract a range of features encompassing several aspects of human
behavior (Table S3) that span three categories:

e Mobility: Conventional wisdom suggests that individuals
tend to stay home when they exhibit symptoms of flu. To
study this intuition, we define three features that focus on
human mobility: Unique Locations Visited, Distance Traveled,
and New Locations Visited all use the spatiotemporal attributes
of the data to estimate movement of individuals.

e Social: Sickness can affect the number of interactions with
other people. We calculated Unique Contacts and New Con-
tacts to identify such variability. Social features use the notion
of “top” contacts, which are the K highest ranked contacts of
an individual when sorted by either their total call duration
or call frequency over the past 30 days. Symptomatic people
might prefer to communicate with their closer contacts than
others while exhibiting symptoms. The features Calls to Top
Contacts and Calls to Non-Top Contacts help evaluate this
tendency.

e Activity: Symptomatic individuals may also alter their phone
usage. The activity features extract the number of interactions
(calls or text) along with the call duration to determine if
individuals’ usage pattern statistics change when sick. The
features are text and call count, total call duration, and mean
call duration.

Many of these features have both incoming and outgoing variants,
resulting in a total of 36 extracted features (Table S2). All feature
extraction functions return a single decimal number for a given time
interval. The functions take in a user, day, and bin to compute a
feature value for the time interval defined by the bin.

Features were selected to be simple and interpretable. Inves-
tigating further feature representations remains future work and
includes considering the contact relationship strength, the proximity
to popular locations, and analysis of the GPRS (and corresponding
3G/4G/5G protocols) data upload and download patterns.

5. Sensitivity Analysis

The cut-off of K = 3 for “top” contacts by call duration and number
of calls (interactions) was chosen as follows. For each user in a
100-person sample of diagnosed individuals, we aggregated the total
duration of calls and number of calls with each of their contact over
and 8-week period. We found that on average, the percentage of
calls and call time to the three highest ranked contacts was high,
or over 40% of interactions as shown in Figure S4.

6. Seasonality

Alternate Approach for Detrending Weekly Routine Behavior. We con-
sidered a different approach for removing the weekly seasonality in
our data, which we call normalized fractional rankings.

As before, we use x5;q = Ef(i,d) to denote the raw feature
value for a feature f, extracted from the CDR by function E, for
individual ¢, and on day d.

To control for the weekly behavioral routine of individual ¢, each
feature value is ranked among those of the same weekday over the
past 10 weeks, then normalized to the range [0, 1]. Specifically, we
rank x ¢;q for feature f on day d within the bag (multi-set) PREV f;4
where

PREVfid = {xfi’(d,”) | ] = 07 17 L 10}
is the behavior on the same day of the week from the previous 10
weeks. The resultant rank ry;4 lies between 1 (lowest value on d
compared to past weeks) and 11 (highest), breaking ties with the
average of spanned ranks. Finally, the rank is linearly mapped to
the normalized fractional rank

Tfid -1

= 0,1.
[PREV fiq| — 1 [0,1]

Vfid

For example, suppose user i received xy;q = 300 seconds of calls
(f) on a given Tuesday d and had PREVf;q = {300, 160,300,700}
seconds of incoming calls on this and the previous three Tuesdays.
The rank of 300 in the sorted list (160, 300, 300, 700) is 2.5, hence
the fractional rank vy;q is

_ 25—1 15
~ 1{300,160,300,700}| —1 4—1

v fid 057
bearing in mind that multi-sets can contain multiple copies of an
element.

In a similar fashion as detrending using simple linear regression,
our ranked feature values normalize for a cyclical weekly pattern.
Accordingly, the ranked feature values for the control group, nor-
malized to the range [0, 1], could be expected to hover around the
median value of 0.5 each day in the limit of large groups. Since the
values are normalized based on 10 weeks of activity, however, and
four weeks are displayed, it is possible for latent longer term trends
to drive the average away from 0.5 (Fig. S10-S27). An advantage of
normalized fractional ranking over linear regression is the universal
limited range across all feature types (between 0 and 1), making
the metric useful as input into machine learning applications, such
as the epidemic curve generated below (SI:Privacy-Preserving Data
Sharing). Our results also show that normalized fractional rank-
ing distills the deviation signal more cleanly than deviation from
weekly average, as evidenced below by the side-by-side compar-
isons of raw feature values, normalized fractional ranking, and the
deviation from weekly average through linear regression (Fig. S10-
S27). A disadvantage of normalized fractional ranking, however, is
the loss of magnitude dimension for the feature which can impact
interpretability.

Other Seasonality. Seasons affect people’s habits (46, 47); we observe
seasonal behavior and cyclical weekly pattern in the extracted
feature values (Fig. S6, the colder 10 weeks average fewer unique
locations visited than the previous warmer 10 weeks), as well as in
the corresponding fractionally ranked and normalized values (Fig. 2,
S5).

Major holidays such as Christmas, New Year’s or Easter can
drastically impact a model. The behavior of a large sample shows
major correlated fluctuations in people’s behavior during the 2009
winter holidays (Fig. S6).
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Table S2. Full Feature Characteristics from the 29-day period around each individual’s DoD and corresponding control. Most features exhibit
a right-skewed distribution (Fig. S2, left column) and share general characteristics across control and diagnosis groups. The rightmost
column indicates which days around diagnosis have a statistically significant p-value from performing the Kolmogorov—Smirnov test with a
Benjamini-Hochberg correction on the control and diagnosed groups (oo = 0.05).

Feature Control Diagnosed Significant Days
Min Max Mean Median Mode | Min Max Mean Median Mode
Unique Locations Visited 0 27 3.04 2 1 0 33 2.74 2 1 -12,-2t0 4
Distance Traveled 0 1011 22.57 5.47 0 0 1515 19.6 3.69 0 -2t0 4,13
Number of New Location Visited 0 18 0.5 0 0 0 26 0.43 0 0 -2,-1,1,2,83
incoming 0 27 2.25 2 0 0 39 2.021 2 1 1%}
Unique Contacts outgoing 0 52 2.50 2 0 0 29 2.277 2 1 1,2,8,6
both 0 53 4.04 3 0 0 57 3.67 3 1 2
incoming 0 20 0.61 0 0 0 13 0.50 0 0 %)
New Contacts outgoing 0 45 0.65 0 0 0 20 0.55 0 0 1,3,6
both 0 46 1.19 1 0 0 24 1 1 0 %)
incoming 0 18558 475 190 0 0 23461  480.51 174 0 0,1,2
Call Duration outgoing 0 11564 460 162 0 0 26553  435.09 135.5 0 0
both 0 22687 935 479.5 0 0 32989 915.60 461 0 0
incoming 0 45 3.10 2 0 0 56 2.84 2 1 1%}
Calls Count outgoing 0 152 3.60 2 0 0 181 3.37 2 0 1,2
both 0 152 6.66 5 0 0 188 6.22 4 1 1
incoming 0 253 2.71 1 0 0 123 2.87 1 0 -10
Texts Count outgoing 0 127 1.74 0 0 0 121 1.93 0 0 2}
both 0 380 4.456 1 0 0 237 4.79 1 0 -10, 11
incoming 0 254 5.779 4 0 0 130 5.71 3 1 1%}
Calls & Texts count outgoing 0 153 5.341 3 0 0 226 5.30 3 1 1,2
both 1 381 11.120 7 0 1 259 11.008 7 1 2
incoming 0 6270 133.35 72.33 0 0 5140 140.74 70.38 0 -1,0,1,2,4, 11
Mean Call Duration outgoing 0 4370 107.96 57.53 0 0 5980 106.74 50.50 0 %)
both 0 4692  143.14 93.85 0 0 5095 149.84 94.25 0 -8,-1t04,11,13, 14
Top-3 Contacts incoming 0 3 0.68 1 0 0 3 0.69 1 0 %)
by Duration outgoing 0 3 0.70 1 0 0 3 0.69 1 0 1
(SI:Sensitivity Analysis)  both 0 6 1.37 1 0 0 6 1.38 1 0 @
Remaining Contacts incoming 0 26 1.57 1 0 0 37 1.33 1 0 1%}
by Duration outgoing 0 51 1.80 1 0 0 27 1.58 1 0 1,2,4,6
both 0 52 3.37 2 0 0 59 2.92 2 1 1%}
Top-3 Contacts incomling 0 3 0.58 0 0 0 3 0.56 0 0 %)
by Frequency outgoing 0 3 0.63 0.5 0 0 3 0.61 0 0 1,2
both 0 6 1.21 1 0 0 6 117 1 0 1
R . incoming 0 26 1.67 1 0 0 37 1.46 1 0 1%)
emaining Contacts .
by Frequency outgoing 0 51 1.88 1 0 0 26 1.67 1 0 -9,2,6
both 0 52 3.54 2 0 0 59 3.13 2 1 2]

Table S3. Feature Descriptions. Details of how each feature is extracted. The function producing each feature outputs a single decimal

number.
Type Name Description
Unique Location Visited The number of unique tower locations to which the phone connects.
Mobilit Distance Traveled The total distance (km) between the towers to which the phone connects chronologically.
y . - The number of unique tower locations to which the phone connects and which were not
New Locations Visited . .
seen in the previous 30 days.
Unique Contacts The number of unique contacts who interacted with this phone.
The number of unique contacts who interacted with this phone, but had not in the past 30
. New Contacts
Social days.
Calls to Top Contacts The number of call interactions with the top K = 3 contacts.
Calls to Non-Top (Remaining) Contacts The number of call interactions for contacts besides the top K.
Text and Call Count Number of texts and calls.
Activity Total Call Duration Total duration of all calls.

Vigfusson et al.

Mean Call Duration

Average duration of all calls.
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Fig. S2. Full distributions of three features six days before diagnosis (DoD-6). Left: Raw feature values (x f;4) for the three most significant features for the diagnosed (orange)
and control groups (blue). Features predominantly follow right-skewed and heavy-tailed distributions (characteristics in Table S2). Right: The detrended change in behavior is
shown for comparison. The averages for the diagnosed and control groups (dashed vertical lines) are closer than for the raw values.
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Fig. S4. Percentage of calls with each top contact by rank, measured by total duration
of calls (left) and total number of calls (right), over an 8-week period for a random
sample of 100 diagnosed individuals.

7. Comparing CDR and GPRS Data

Both the CDR and GPRS data provides a proxy for location about
the subject through the tower location. The who-calls-whom rela-
tionship in CDR data encapsulates a deidentified social network of
users whereas GPRS data acts as a location proxy. On the other
hand, GPRS entries are made whenever the mobile device makes
an Internet connection, for example when an application periodi-
cally checks for new e-mail in the background, providing location
information even when the user is not actively using the device.

As mobile users increasingly make voice, video calls and exchange
messaging via Internet applications such as WhatsApp, Skype, or
Facebook Messenger using the mobile data services (GPRS for
short) for rather than the via the native mobile network voice
and text (SMS) protocols, CDR data becomes sparser (fewer calls)
whereas the GPRS data becomes richer (more data connections).
We measured the extent to which these two data sources complement
one another as follows.

Define the Lin’s divergence of two probability distributions P, @ :
X — [0,1] as

Du(P Q) =3 Pates (5 e )

TEX

The metric takes values in [0,1], with Dy, (P || Q) = 0 when P = Q
almost surely. This last property is an advantage over the tradi-
tional Kullback-Liebler (KL) divergence, which requires absolute
continuity (Q(z) # 0 whenever P(x) # 0),

We considered the interval of data between 1 January and 15
February 2010. Let ay(t,x) denote the probability that user u
interacts with cell tower at location x at time of day ¢. Here, towers
are grouped by the unique GPS location of their GSM masts as
before. Time is measured in 1-hour intervals. We further subdivide
ay into ¢, and dy, where ¢, (t, z) is the probability of interaction
according to CDR call data, and d (¢, z) is the same probability
according to GPRS data-connection records for that user.

We calculated the average Dy (cy || aw) and Dp(dy || aw) for
all users and plot the results in Figure S7. GPRS logs provided
mostly redundant location information except during the night
hours (4-6am) relative to CDR call data in our dataset. Advances in
smartphone technology coupled with more affordable and available
cellular data access are likely to affect this result.

8. Privacy-Preserving Data Sharing

Model and Assumptions. Syndromic surveillance based on models
and information from diverse sources requires a careful data col-
lection architecture to ensure maximal privacy for the subjects.
An experimental validation or a later practical implementation for
monitoring epidemics using CDR data could hypothetically support
two modes of operation:

O1 the standard monitoring mode for health officials, producing
interactive charts of the epidemic curve in real-time using
already trained models, and

12 |

O2 the ability to calibrate the models based on new labeled data,
for instance when supporting or monitoring diseases with dif-
ferent profile of symptoms.

Whether as part of an experimental design or a full-fledged imple-
mentation, both of these modes should maintain two invariants to
ensure privacy. First, while we assume mobile operators already
have access to cell phone data and metadata, they should not be
privy to any new health information of their customers or small
groups of users. Second, health officials should not be able to glean
spatiotemporal information of individuals or small groups, including
from any aggregate call data statistics or epidemic charts.

Protocol Design. At a high-level, our architecture consists of three
kinds of entities: MNOs, health officials, and an independent 3rd
party broker (Fig. 3). We assume multiple MNOs may intend to
contribute streams of CDR data to the trusted 3rd party broker.
The broker is then responsible for computing features from the
CDR data and running our models, and then generating interactive
epidemic curves, either for experimental analysis and validation,
or directly for use by the health officials. In practice, the broker
could be operated by a university or other non-profit, or via an
administratively separate joint venture between the disease control
and MNOs.

Before streaming CDR data to the broker, the MNOs take a
one-way hash of identities (subject and object numbers) in a similar
fashion as was done when preparing the dataset in this paper.
Specifically, each MNO ¢ maps a customer phone number a by first
combining it with a secret key s; and then a strong cryptographic
hash function (such as SHA-3, which is not susceptible to length-
extension attacks). The customer identified by phone number a
is thereafter only known to the broker by the identifier sha3(s;||a)
which we will write s;(a). Note that CDR from when customers of
two different MNOs call one another cannot be compared, as the
records will have incompatible identifiers under this design (unless
the MNOs all share the same secret key). Thus, the social network
over the clients will be partitioned between MNOs; this is unlikely
to be a problem for outbreak surveillance.

To enable retraining of the model in light of new data (02),
we must provide a mechanism for assigning labels based on health
information to phone numbers without violating our privacy invari-
ants. In our design, the health officials also provide each MNO ¢
with a designed secret key o; (Fig. 3, right). These keys are not
known by the broker. Each MNO ¢ regularly provides the broker
with an up-to-date mapping (o;(a), s;(a)) between the two hashes
of the phone number a. The hashing functions are non-invertible
and so the broker does not learn anything about any phone number
a from these maps. When a health official now wants to create a
label for the person with phone number a, which is known through
a separate look-up mechanism to have cell phone service with MNO
i, the health officials submit the identifier ;(a) to the broker with
accompanying health information (such as date of diagnosis) for the
label. The broker is now able to use the labeled data to retrain and
calibrate the epidemic curve models as needed. The MNO has not
been exposed to any health information about their customers; the
broker has not learned any identities or phone numbers, and the
scientists or health officials have not been provided spatiotemporal
or other personal information about any user.

Differential Privacy. In this set-up, the scientists or health officials
are only provided aggregate statistics and thus learn nothing about
individual or small numbers of subjects. Aggregation is not suffi-
cient: if health officials are allowed to interact with the data, such
as to study particular demographics or areas, the small number of
individuals studied by such queries might compromise their iden-
tities. For example, a particular rural area might have only one
person in the specific age range, which would give officials unjusti-
fied insights into their movements and private affairs. The study
of differential privacy mitigates precisely these kinds of vulnera-
bilities, allowing queries to be run for smaller groups of people
without unduly compromising user privacy. The underlying idea is
to add appropriate noise to the data being queried based on the
specificity of the query while retaining the aggregate statistics, even
in spatiotemporal settings (1, 2). The implementation of differ-
ential privacy for CDR data should account for combination and
correlation of aggregate information and statistics with other data

Vigfusson et al.
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Day (Dec 25) have lower cellular activity and movement than typical, whereas Dec
23 has greater activity than normal for a Wednesday. Error bars show the 99.9%

confidence intervals.

Fig. S7. Average Lin divergence Dy (¢, || av) and Dr(d, || a.) for per-hour
location information in CDR call data (red) and GPRS data-access records (blue),
respectively, from all available location data across all users between 1 January 2010
and 15 February 2010. The GPRS data provides useful location information during
the night, whereas CDR data are more informative at other hours.
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sources, including recent attacks such as trajectory recovery (3) and
membership inference (4).

9. Visualizations

The behavioral changes are visualized through two families of graphs:
the extracted feature plots (Fig. S6) and deviation from routine plots
(Fig. S10-S27). The former illustrate the mean trend for the entire
population sample while the latter is normalized on an individual
basis and instead shows the average normalized values. We observe
people’s behavioral changes depend on the day of the week (Fig. S6);
for instance, Sundays are on average considerably less active in terms
of movement and call activity than Fridays. Given the focus on
change in routine behavior, all the visualizations use the preceding
10 weeks (on the same day of the week) to either normalize by
(Fig. S10-S27) or to plot as a reference (Fig. S6). Some plots display
raw feature values immediately after extraction (Figs. S8, S2 and S3)
while others compare values after either detrending through linear
regression or fractional ranking and normalization (Figs. S10-S27).

For most features, the underlying data do not follow a normal
distribution. Accordingly, the error bars show confidence intervals
computed through bias-corrected and accelerated (BCa) bootstrap-
ping with 10,000 samples.

Statistical Significance. Because of the variability in feature distri-
bution types, we choose the non-parametric two-sample KS test
for comparing the diagnosed and control groups after fractional
ranking and normalization. For Fig. S10-S27, an accompanying
significance table is depicted alongside the line plots (Table S4 is a
more verbose example). Here, Day is the day relative to the DoD
and corresponds to the horizontal axes of the line plots. Recall that
in these comparisons, each control is aligned at the same DoD as
their diagnosed counterpart. The control (C) and diagnosed (D)
columns show the average value of the feature in the respective
group, either raw, detrended, or normalized after fractional ranking.
Each KS test returns a D-value representing the test statistic and a
p-value for the the given feature and Day. FDR shows the corrected
p-values after the BH multiple test correction. Reject (R) is a
Boolean variable that indicates whether the null hypothesis of the
KS-test should be rejected based on a significance level of a (set as
default value of o = 0.05).

Table S4. Template for the significance tables used in Figs. S10-S27.

Day | Control | Diagnosed | KSD-vals | KSp-als | FDRp-vals | Reject

S| References

1. Chen, R., Fung, B., Desai, B. C., and Sossou, N. M. (2012) Differentially private transit data
publication: a case study on the Montreal transportation system. In 18th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining (KDD) ACM pp. 213-221.
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D, =

16

nm

obtained by adding 4+ D, to the control group line.

\/ 3 In % nt™m \where n and m are the sample sizes for the control and diagnosed groups and o« = 0.05. The confidence band around each control group is
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(c) Normalized fractional ranking. (c) Normalized fractional ranking.

Fig. S13. Feature graph and significance test results for new contacts (outgoing) Fig. S14. Feature graph and significance test results for new contacts (both incom-
using raw, detrended, and ranked data. ing and outgoing) using raw, detrended, and ranked data.
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(c) Normalized fractional ranking.

Fig. S15. Feature graph and significance test results for call duration (incoming)
using raw, detrended, and ranked data.
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(c) Normalized fractional ranking.

Fig. S16. Feature graph and significance test results for call duration (outgoing)

using raw, detrended, and ranked data.
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Fig. S17. Feature graph and significance test results for call duration (both incom-
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ing and outgoing) using raw, detrended, and ranked data.
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(c) Normalized fractional ranking.

Fig. S18. Feature graph and significance test results for calls count (outgoing)

using raw, detrended, and ranked data.
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Fig. S20. Feature graph and significance test results for mean call duration (incom-

Fig. S19. Feature graph and significance test results for calls count (both incoming ing) using raw, detrended, and ranked data

and outgoing) using raw, detrended, and ranked data.
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(c) Normalized fractional ranking. (c) Normalized fractional ranking.

Fig. S21. Feature graph and significance test results for mean call duration (outgo-  Fig. S22. Feature graph and significance test results for mean call duration (both
ing) using raw, detrended, and ranked data. incoming and outgoing) using raw, detrended, and ranked data.
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(c) Normalized fractional ranking. (c) Normalized fractional ranking.

Fig. S23. Feature graph and significance test results for nontop contacts by dura-  Fig. S24. Feature graph and significance test results for nontop contacts by dura-
tion (outgoing) using raw, detrended, and ranked data. tion (both incoming and outgoing) using raw, detrended, and ranked data.
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(c) Normalized fractional ranking. (c) Normalized fractional ranking.

Fig. S25. Feature graph and significance test results for nontop contacts by fre-  Fig. S26. Feature graph and significance test results for nontop contacts by fre-
quency (incoming) using raw, detrended, and ranked data. quency (outgoing) using raw, detrended, and ranked data.
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(c) Normalized fractional ranking.

Fig. S27. Feature graph and significance test results for nontop contacts by fre-
quency (both incoming and outgoing) using raw, detrended, and ranked data.
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