
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Letting the Cloud Serve DNN Inferences with Ruthless Efficiency
Reza Karimi

rkarimi@emory.edu
Emory University

Atlanta, GA

Anthony Simpson
asimpson@mpi-sws.org

MPI-SWS
Saarbrücken, Germany

Antoine Kaufmann
antoinek@mpi-sws.org

MPI-SWS
Saarbrücken, Germany

Ymir Vigfusson
ymir@mathcs.emory.edu

Emory University
Atlanta, GA

Jonathan Mace
jcmace@mpi-sws.org

MPI-SWS
Saarbrücken, Germany

INTRODUCTION

The success of deep neural networks (DNNs) in computer vision,
natural language processing, speech recognition and other domains
has led to the rapid growth of systems and platforms to support
deep learning (DL) and enable its wider use. In a cloud and data
center settings, DL workloads can broadly be divided into training
tasks and inferences. Training is a compute intensive batch task
that constructs a DNN using large quantities of data; training bears
similarity to other batch tasks like data analytics jobs and faces
similar challenges. In contrast, inference is a low-latency, online
task that generates predictions on-demand using a trained DNN;
inference bears similarity to online applications like databases, web
services, and microservices, and is often just one piece of a broader
end-to-end application. DNNs are typically hosted separately from
application logic and accessed via remote procedure call (RPC).

The need for speed. Owing to the ecosystem of platforms, li-
braries, and runtimes used to develop, train, and deploy DNNs,
current hosted DNN inference engines, or model serving services,
have inherited unnecessary bloat. Time-critical inference requests
for a model may require a large container or an entire virtual ma-
chine (VM) to be spun up, overhead that eclipses the relatively
lightweight operation of running an inference on a model loaded
into a CPU or GPU. For example, researchers evaluating the feasibil-
ity of DNNs in serverless applications measured cold-start times of
up to 12 seconds for 100MB models [3]. These overheads translate
into latency for end-users and costs for model providers, problems
that stymie the growth of hosted machine learning applications.

Our contributions. We set out tackle the challenges of mak-
ing model inference services fast and cost-effective. We have built
Clockwork: a model serving system that provides lightweight
DNN inference on its compute resources as a multi-tenant cloud
primitive. Instead of depending on bulky associated environments
for running each inference, Clockwork treats the DNN models as
first-class citizens. Clockwork exploits the observation that DNN
inference has predictable duration and deploys a centralized sched-
uler to provide fast and cost-efficient inference operations with
consistent performance. The Clockwork design maintains isola-
tion and provides latency SLOs to operators. The system ensures
fair and graceful degradation of inference service across models
when load exceeds system capacity, and heralds capacity warnings
sooner than in feedback loops driven by SLO violation rates.

MULTI-TENANT MODEL SERVING GOALS

Machine learning models are increasingly being applied to solve
problems in interactive settings, and now sit on the critical path
of end-user requests. To accommodate such applications, model
serving systems have grown while focusing predominantly on
maximizing the throughput for individual models (such as DNNs)
operating at large scale, for example by leasing a dedicated Google
virtual machine with a TPU. Recent research, however, has started
to examine model serving where multiple pre-trained models need
to be served. In this scenario, multi-model serving is an online
task with typically unpredictable workloads that can experience
temporary bursts and fluctuations in demand. Multi-model serving
strives for several goals:
(G1) To satisfy strict latency SLOs (on the order of milliseconds);
(G2) To maximize throughput by minimizing wasted resources

(e.g., by packing models together), and
(G3) To drop requests early and in a fair manner across mod-

els when SLOs cannot be met because of limited compute
resources.

The first two goals underscore the higher-level objective of making
model serving cost-effective. In settings whereby one model does
not exhibit enough demand to fully utilize an entire machine, as
studied in recent work, the resources can be shared to mitigate
costs – scenarios include cloud model hosting, edge model hosting,
and on-premise hosting.

CHALLENGES

Yet resource sharing makes goals G1-G3 difficult to meet for several
key reasons.

Foregone performance isolation. The system must prevent
performance interference between different tenants. However, shared
systems cannot rely on OS mechanisms for isolation between ten-
ants, instead must address isolation at application level.

Low-demand workloads. Many workloads are intermittent
or sporadic, or never see sufficient demand to warrant dedicated
resources and are thus subjected to cold-start set-up times. Existing
solutions from cloud providers are insufficient for low-demand
workloads, as they suffer from high latency and unacceptable dollar
costs, and these workloads have not been studied at adequate depth
in recent literature to our knowledge.

Security concerns. Shared systems execute requests of different
tenants within the same, shared processes. Thus, users are no longer
separated by rigid OS or VM boundaries. Hence, we must ensure

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

AI Systems at SOSP ’19, October 27–30, 2019, Ontario, Canada Karimi and Simpson, et al.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

0 100 200 300 400 500
latency (ms)C

lo
ck

w
or

k
BA

R
IS

T
A 300 46 125

11

5

5

inference
model load

container download
vm spawn

Figure 1: Breakdown of worst-case model inference times with a cold-start

(no model loaded into GPU memory) for Clockwork and numbers reported

for BARISTA [2] on the Resnet-50 DNN benchmark.

security between different tenants’ workloads. Resource sharing
further opens the doors for side-channel attacks whose risks must
be considered, assessed, and assumed.

OPPORTUNITIES

DNN inferencehas predictable performance.Unlikeworkloads
from other domains, DNN inference has highly predictable resource
consumption patterns, and requests have a predictable duration
once scheduled. In other multi-tenant systems, performance iso-
lation is difficult primarily because resource requirements are un-
predictable and vary widely from request to request, and once a
request is admitted it runs to completion. DNN inference does not
face this challenge, because inference is a fundamentally predictable
computation. Experiments with our TVM [1] -based runtime show
99th percentile latencies not exceeding 2% of the mean for a range
of off-the-shelf DNNs. This determinism stems from the structure
of DNNs, they are a fixed sequence of mathematical operations. A
priori, we can quantify the exact number of flops required by each
layer of the DNN. Moreover, DNNs are predictable as they do not
contain control flow elements. DNNs that accept variable-sized or
batched inputs also vary deterministically based on input size.

Models likely to be reused can be cached. Once a model is
trained, the model weights are immutable and identical between
inference requests. Therefore, not all inference requests must incur
memory transfer overheads if the DNN weights are cached in main
memory. The memory footprint of a DNN is in the tens/hundreds
of MBs; in contrast, today’s web servers often exceed 1TB of main
memory, present GPUs have up to 32GB devicememory, and present
TPUs have 64GB device memory. Swapping between cached models
is thus more efficient than to reload trained models from scratch.

Inference scheduling can be highly optimized. We can ex-
ploit the predictable DNN inference latency together with pre-
dictable transfer times between host memory and device memory
to vastly improve request scheduling, both at request admission, and
at finer granularity within the system. Instead of heuristic-based
best-effort scheduling, we can confidently optimize an objective
across all pending requests, such as minimizing average execution
latency, and to ensure fair resource sharing across tenants.

CLOCKWORK SYSTEM DESIGN

The Clockwork system architecture is similar to existing systems
such as shared filesystems and databases. Meta-operations are han-
dled by a logically centralized controller. DNN inference is handled
by worker processess spread across many machines.

The lifecycle from a user’s perspective is to (1) upload a trained
DNN to the system, then (2) send inference requests. The system

WFQ Rand CR EDF
FIF

O

Clockw
ork

0.00

0.25

0.50

0.75

1.00

Normalized Fairness Index

WFQ Rand CR EDF
FIF

O

Clockw
ork

0.00

0.25

0.50

0.75

1.00

Normalized Avg Success Ratio

Figure 2: Fairness and average success rate of different scheduling policies

compared to the Clockwork scheduling algorithm.

performs inference when requests are received, and transparently
scales based on the workload demand. Internally, the system dis-
tributes models to one or more workers. Inference requests are
routed to whichever workers host the model. Workers host models
from many tenants simultaneously, and multiplex execution across
different models.

At the heart of Clockwork is an optimization algorithm for
scheduling requests. Our algorithm expands Fair-EDF [5] to mul-
tiple workers, supporting arbitrary-length jobs and considering
DNN-model affinity, explicitly trading off the number of completed
jobs with fairness – the variation in the proportion of jobs com-
pleted by each tenant out of those they requested. We also exploit
batching, explicitly bundling together inferences for the samemodel
instance and thus avoiding model start-up costs.

EVALUATION RESULTS

Clockwork is fast. To illustrate the potential speed-up from
our approach, Figure 1 shows the breakdown of worst-case per-
formance for the state-of-the-art model serving system BARISTA
[2] and Clockwork on a standard benchmark (Resnet-50) when
serving an inference for a model not yet loaded into memory. Once
the model weights have been received by the node, Clockwork
loads the model and completes an inference in 17ms, compared to
478ms for BARISTA (28× slower) due to an amalgam of overheads.
To mitigate overheads, BARISTA attempts to predict inferences
through time-series analysis and proactively spawn up appropriate
VMs, containers and models before they are needed. Clockwork,
in contrast, curbs overheads and focuses its efforts on scheduling
inference tasks in a manner that further reduces the already meager
model load-up times.

Clockwork is fair. On a set of different simulated workload
scenarios that vary model request rates, client burstiness, SLOs and
DNNmodels, the Clockwork algorithm outperformed other sched-
uling policies on both Jain’s fairness index [4] and the proportion
of jobs that finished prior to their deadline (Figure 2).

CONCLUSION

Our system, Clockwork, provides DNN inference as a cloud prim-
itive by implementing a shared multi-tenant system. Clockwork’s
ability to serve models very quickly — our implementation over
TVM serves ResNet-50 inference query from cold start in only 17ms
— clears obstacles for applying machine learning on the critical path
of requests and paves the way for highly efficient model serving.

2



255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Letting the Cloud Serve DNN Inferences with Ruthless Efficiency AI Systems at SOSP ’19, October 27–30, 2019, Ontario, Canada

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

REFERENCES

[1] TVM: End to End Deep Learning Compiler Stack. https://tvm.ai/, Last accessed
on 08-08-2019.

[2] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei Kang, Hongyang Sun,
Aniruddha Gokhale, and Gabor Karsai. Barista: Efficient and scalable server-
less serving system for deep learning prediction services. arXiv preprint

arXiv:1904.01576, 2019.

[3] Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. Serving deep
learning models in a serverless platform. In 2018 IEEE International Conference on

Cloud Engineering (IC2E), pages 257–262. IEEE, 2018.
[4] Raj Jain, Arjan Durresi, and Gojko Babic. Throughput fairness index: An explana-

tion. In ATM Forum contribution, volume 99, 1999.
[5] Yuhan Peng and Peter Varman. Fair-EDF: a latency fairness framework for shared

storage systems. In 11th USENIXWorkshop on Hot Topics in Storage and File Systems

(HotStorage 19), 2019.

3

https://tvm.ai/

	References

